@Article{JNMA-7-1332,
author = {Fadil , Y.Ouaarabi , M. El and Oukessou , M.},
title = {Study of Certain Navier Problems in Sobolev Space with Weights},
journal = {Journal of Nonlinear Modeling and Analysis},
year = {2025},
volume = {7},
number = {4},
pages = {1332--1352},
abstract = {
In this paper, we study the following Navier problem

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1,
v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness
of weak solution to the above problem.
},
issn = {2562-2862},
doi = {https://doi.org/10.12150/jnma.2025.1332},
url = {http://global-sci.org/intro/article_detail/jnma/24237.html}
}
TY - JOUR
T1 - Study of Certain Navier Problems in Sobolev Space with Weights
AU - Fadil , Y.
AU - Ouaarabi , M. El
AU - Oukessou , M.
JO - Journal of Nonlinear Modeling and Analysis
VL - 4
SP - 1332
EP - 1352
PY - 2025
DA - 2025/07
SN - 7
DO - http://doi.org/10.12150/jnma.2025.1332
UR - https://global-sci.org/intro/article_detail/jnma/24237.html
KW - Navier problem, degenerate quasilinear elliptic equations, weighted
Sobolev spaces, weak solution.
AB -
In this paper, we study the following Navier problem

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1,
v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness
of weak solution to the above problem.
Fadil , Y.Ouaarabi , M. El and Oukessou , M.. (2025). Study of Certain Navier Problems in Sobolev Space with Weights.
Journal of Nonlinear Modeling and Analysis. 7 (4).
1332-1352.
doi:10.12150/jnma.2025.1332
Copy to clipboard