Volume 7, Issue 4
Study of Certain Navier Problems in Sobolev Space with Weights

Y. Fadil, M. El Ouaarabi & M. Oukessou

J. Nonl. Mod. Anal., 7 (2025), pp. 1332-1352.

Published online: 2025-07

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we study the following Navier problem

image.png

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1, v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness of weak solution to the above problem.

  • AMS Subject Headings

35J15, 35J60, 35J66, 35J70, 35J91

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-7-1332, author = {Fadil , Y.Ouaarabi , M. El and Oukessou , M.}, title = {Study of Certain Navier Problems in Sobolev Space with Weights}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2025}, volume = {7}, number = {4}, pages = {1332--1352}, abstract = {

In this paper, we study the following Navier problem

image.png

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1, v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness of weak solution to the above problem.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2025.1332}, url = {http://global-sci.org/intro/article_detail/jnma/24237.html} }
TY - JOUR T1 - Study of Certain Navier Problems in Sobolev Space with Weights AU - Fadil , Y. AU - Ouaarabi , M. El AU - Oukessou , M. JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 1332 EP - 1352 PY - 2025 DA - 2025/07 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1332 UR - https://global-sci.org/intro/article_detail/jnma/24237.html KW - Navier problem, degenerate quasilinear elliptic equations, weighted Sobolev spaces, weak solution. AB -

In this paper, we study the following Navier problem

image.png

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1, v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness of weak solution to the above problem.

Fadil , Y.Ouaarabi , M. El and Oukessou , M.. (2025). Study of Certain Navier Problems in Sobolev Space with Weights. Journal of Nonlinear Modeling and Analysis. 7 (4). 1332-1352. doi:10.12150/jnma.2025.1332
Copy to clipboard
The citation has been copied to your clipboard