TY - JOUR T1 - Study of Certain Navier Problems in Sobolev Space with Weights AU - Fadil , Y. AU - Ouaarabi , M. El AU - Oukessou , M. JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 1332 EP - 1352 PY - 2025 DA - 2025/07 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1332 UR - https://global-sci.org/intro/article_detail/jnma/24237.html KW - Navier problem, degenerate quasilinear elliptic equations, weighted Sobolev spaces, weak solution. AB -

In this paper, we study the following Navier problem

image.png

Here, $h ∈ L^{p'} (\mathcal{Q}, v^{1−p′}_1),$ $\mathcal{K}, \mathcal{L}$ and $b$ are Carathéodory functions and $ϕ_1,ϕ_2,$ $v_1, v_2, v_3$ and $v_4$ are $A_p$-weights functions. By using the theory of monotone operators (Browder–Minty Theorem), we demonstrate the existence and uniqueness of weak solution to the above problem.