
Numer. Math. Theor. Meth. Appl. Vol. 9, No. 4, pp. 497-527

doi: 10.4208/nmtma.2016.m1603 November 2016

Adaptive Mixed GMsFEM for Flows

in Heterogeneous Media

Ho Yuen Chan1,∗, Eric Chung1 and Yalchin Efendiev 2

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin,

Hong Kong SAR
2 Department of Mathematics and Institute for Scientific Computation (ISC),

Texas A&M University, College Station, Texas 77843-3368, USA.

Received 8 January 2016; Accepted (in revised version) 6 July 2016

Abstract. In this paper, we present two adaptive methods for the basis enrichment

of the mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving

the flow problem in heterogeneous media. We develop an a-posteriori error indica-
tor which depends on the norm of a local residual operator. Based on this indicator,

we construct an offline adaptive method to increase the number of basis functions

locally in coarse regions with large local residuals. We also develop an online adap-
tive method which iteratively enriches the function space by adding new functions

computed based on the residual of the previous solution and special minimum en-
ergy snapshots. We show theoretically and numerically the convergence of the two

methods. The online method is, in general, better than the offline method as the on-

line method is able to capture distant effects (at a cost of online computations), and
both methods have faster convergence than a uniform enrichment. Analysis shows

that the online method should start with a certain number of initial basis functions

in order to have the best performance. The numerical results confirm this and show
further that with correct selection of initial basis functions, the convergence of the

online method can be independent of the contrast of the medium. We consider
cases with both very high and very low conducting inclusions and channels in our

numerical experiments.

AMS subject classifications: 65N30, 65N12

Key words: Mixed multiscale finite element methods, multiscale basis, adaptivity, online basis,

flow in heterogeneous media.

1. Introduction

Many real-world problems involve multiple scales and high contrast. To solve

these problems, we often adopt some forms of model reduction such as upscaling and
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multiscale methods. These methods can reduce the degrees of freedom of a prob-

lem. For example, in upscaling methods [17, 22, 25, 28], the multiscale media are

upscaled so that the problem can be solved on a coarse grid. In multiscale meth-

ods [1, 3, 5, 6, 8, 9, 12, 16, 18–21, 23, 24, 27], basis functions are solved on a fine grid

to capture the multiscale features of a medium and the problem is then solved on the

coarse grid with these basis functions.

In this paper, we will present two adaptive enrichment algorithms for the general-

ized multiscale finite element method (GMsFEM) in solving the mixed framework of

the flow problem in heterogeneous media [10]. The first method is based on a local

error indicator. We use this indicator to search for the regions, where more basis func-

tions are needed. This method will only add pre-computed basis functions, which are

computed in the offline stage so we call it an offline adaptive method. In the second

method, new basis functions are computed based on the previous solutions. We call it

an online adaptive method.

GMsFEM [7] is a generalization of the classical multiscale finite element method

[26]. In the classical method, one basis function per coarse edge is used to capture

the multiscale features. For the multiscale mixed finite element method, one may

see [1, 2, 4]. GMsFEM allows more basis functions per coarse edge to be used to take

into account the effects of non-separable scales. The main idea is to solve local spec-

tral problems for the selection of basis functions. The formation of basis functions in

GMsFEM can be divided into offline and online stages. In the offline stage, offline basis

functions are computed based on the multiscale features so that these functions can

be reused for any input parameters to solve the equation. Online functions are those

depending on the parameters. In [15], an adaptive algorithm is developed to enrich

the space by adding basis functions which are formed in the offline stage. In [14],

adaptive methods which involve the formation of new online basis functions based on

the previous solution are developed. These methods show significant acceleration in

the convergence rate of GMsFEM. There are also related methods developed for the

discontinuous Galerkin formulation in [11] and [13].

In the paper, we will focus on the mixed framework of the flow problem. The mixed

methods are important for many applications, such as flows in porous media, where

the mass conservation is essential. We developed two adaptive methods to enrich the

function space. One involves only offline basis functions while the other adds new

online basis functions that are constructed using special minimum energy snapshots.

We call them an offline and an online adaptive methods respectively. Two local spectral

problems are developed for constructing multiscale basis functions. Both of them can

be used in the online method, but only one can be used in the offline method. We

propose error indicators which are based on the L2 and the H(div) norms of the local

residual. These error indicators can be used to approximate the error of the solution.

From [10], we know that the error between the GMsFEM solution and the fine grid

solution involves two parts: one due to the selection of the basis functions and the

other due to the discretization of the source function. In this paper, we will assume

the error due to the discretization of the source function is small and consider only the
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former part. The offline adaptive method depends on the error indicator to help the

selection of basis functions. The online adaptive method produces new basis functions

iteratively by projecting the previous solution on the space of divergence free functions.

We emhasize that [10] gives a-priori error estimate of the mixed GMsFEM, and the

purposes of this paper are a-posteriori error estimates and adaptivity.

In our analysis, we prove the convergence of the two methods. It can be shown that

the error is bounded by the local error indicators. By adding offline basis functions to

those coarse grid edges with large error indicator, we can show a guaranteed conver-

gence rate for the error of the solution together with the local error indicators. The

convergence rate depends on the parameters of the offline adaptive method. These pa-

rameters control the number of coarse grid edges to be chosen and the number of basis

functions to be added for each of those edges. For the online adaptive method, a set of

non-overlapping subsets of the domain is selected. New basis functions are computed

on each of these subsets. We show that the convergence rate depends on the norm of

the residual operator restricted on those subsets, and also the eigenvalues of the offline

basis functions that are not included in the initial basis.

We present some numerical results to show the convergence behaviour and some

properties of the adaptive methods. We consider both high and low conductivity inclu-

sions and channels in the domain. By comparing the adaptive methods to uniformly

enriching the function space, one can see the efficiency of the adaptive methods. In

particular, the performance of the online adaptive method is generally the best since

it adds functions which are computed based on the previous solution while the offline

adaptive method enriches the space by adding basis functions which are independent

of the input parameters. We will see that both the choice of the non-overlapping re-

gions and the initial number of basis functions on each coarse grid edge affect the

convergence of the online adaptive method. Some of the eigenvalues from the spectral

problems are sensitive to the contrast of the problem. By including functions corre-

sponding to those eigenvalues in the initial basis, the convergence of online adaptive

method becomes independent of the contrast.

The rest of the paper is organized in the following way. In the next section, we

briefly introduce the basic idea of mixed GMsFEM. At the end of the section, we give

the detail of the two adaptive methods. In Section 3, we state and prove the conver-

gence results for the adaptive methods. In Section 4, numerical results are given to

illustrate the convegence behaviour of the adaptive method and the factors affecting

the convergence. The paper ends with a conclusion.

2. Method description

2.1. Overview

Consider the high-contrast flow problem in a mixed formulation:

κ−1v +∇p = 0 in D,

div(v) = f in D,
(2.1)
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with Neumann boundary condition v · n = g on ∂D, where κ is a high-contrast perme-

ability field, D is the computational domain in R
n and n is the unit outward normal

vector of the boundary of D.

We will solve the equation on two meshes with different scales. Let T H be a par-

tition of D into finite elements (triangles, quadrilaterals, tetrahedra, etc.), where H is

the mesh size. We call T H the coarse grid. Next we construct a finer grid. For each

coarse grid element K ∈ T H , we further partition K into a finer mesh such that the

resulting partition T h of D with size h is conforming across coarse-grid edges. We call

T h the fine grid. Denote the set of all faces of the coarse grid as EH , and let Ne be the

total number of faces of the coarse grid. We define the coarse grid neighborhood ωi of

a face Ei ∈ EH as

ωi =
⋃{

K ∈ T H : Ei ∈ ∂K
}
,

which is indeed a union of two coarse grid blocks.

Next, we define the notations for the solution spaces for pressure and velocity. Let

Q be the space of functions which are constant on each coarse grid block. We will use

this space to approximate p. For the velocity space, we will first construct a set of basis

functions β
(i)
snap for each coarse grid neighborhood ωi. We call

Vsnap =
⊕

Ei∈EH

V
(i)

snap

the snapshot space, where V
(i)

snap = span
(
β
(i)
snap

)
. The snapshot space is an extensive set

of functions which can be used to approximate the solution v. However, this space is

large and we will reduce it to a smaller one before we solve the equation. From each

V
(i)

snap, we select a set of basis functions β
(i)
ms. Denote

V
(i)

ms = span
(
β
(i)
ms

)
, Vms =

⊕

Ei∈EH

V
(i)

ms .

The size of Vms is generally smaller than Vsnap. We will use the space Vms to approximate

the velocity v.

With the pressure space Q and the velocity space Vms, we solve for pms ∈ Q and

vms ∈ Vms such that
∫

D

κ−1vms · w −
∫

D

div(w)pms = 0 ∀w ∈ V 0
ms,

∫

D

div(vms)q =

∫

D

fq ∀q ∈ Q,

(2.2)

with boundary condition vms ·n = gH on ∂D, where V 0
ms = {v ∈ Vms : v ·n = 0 on ∂D},

and gH is the projection of g in the sense that
∫

Ei

(gH − g)φ · n = 0 ∀φ ∈ β
(i)
snap and Ei ⊆ ∂D,
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and gH is constant on each fine grid face. We remark that the required inf-sup condition

for (2.2) is shown in [10].

For Ω ⊂ D and v ∈ Vsnap, we define two norms ‖v‖L2(Ω;κ−1) and ‖v‖H(div;Ω;κ−1) as

‖v‖L2(Ω;κ−1) =

(∫

Ω
κ−1|v|2

) 1
2

and

‖v‖H(div;Ω;κ−1) =

(∫

Ω
κ−1|v|2 +

∫

Ω
div(v)2

) 1
2

.

We will use these two norms in the adaptive methods.

In the coming sections, we will discuss the formation of the snapshot space Vsnap

and the method of selecting the β
(i)
ms’s. We will also give two adaptive methods of

enrichment of the multiscale space Vms so as to get a more accurate solution without

using too many basis functions.

2.2. Snapshot space

In this section, we will present the construction of the snapshot space which is a

large function space containing basis functions up to the resolution of fine grid faces

on the coarse grid faces. We construct the local snapshot bases β
(i)
snap by solving a local

problem on each coarse grid neighbourhood ωi, and then combine the β
(i)
snap’s to form

the snapshot space Vsnap.

Let Ei ∈ EH . We write Ei =
⋃Ji

j=1 ej , where the ej ’s are the fine grid faces contained

in Ei and Ji is the total number of those fine grid faces. We will solve the following

local problem to obtain β
(i)
snap,

κ−1v
(i)
j +∇p

(i)
j = 0 in ωi, (2.3a)

div(v
(i)
j ) = α

(i)
j in ωi, (2.3b)

subject to the homogeneous Neumann boundary condition v
(i)
j ·ni = 0 on ∂ωi. We want

the snapshot basis to contain solutions of the local problem with all possible boundary

conditions on the edge Ei up to the fine grid resolution. Therefore, the problem is

solved separately on each coarse-grid element K ⊆ ωi with the additional boundary

condition v(i) · ni = δ
(i)
j on Ei, where δ

(i)
j is defined by

δ
(i)
j =

{
1 on ej ,

0 on Ei\ej ,

and ni is a fixed unit-normal vector for each face Ei. The function α
(i)
j is constant on

each coarse grid block and it should satisfy the condition
∫
K
α
(i)
j =

∫
∂K

v
(i)
j ·ni for every

K ⊆ ωi.
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The set of solutions to (2.3a) is the local snapshot basis β
(i)
snap. Using

⋃
Ei∈EH β

(i)
snap

as a basis, we have the snapshot space Vsnap.

2.3. Offline space

After we obtain the snapshot spaces Vsnap, we perform a dimension reduction to

get a smaller space. Such reduced space is called the offline space. The reduction

is achieved by solving a local spectral problem on each coarse grid neighborhood ωi.

Some of the eigenfunctions will be used to form the local basis β
(i)
ms. The local spectral

problem is to find real number λ and v ∈ V such that

a(v,w) = λs(v,w), ∀w ∈ V, (2.4)

where V is the snapshot space, a and s are symmetric positive definite bilinear opera-

tors defined on V × V .

We propose the following two possible spectral problems for the basis selection. In

these two problems, V is set to be V
(i)

snap.

Spectral problem 1: We take

ai(v,w) =

∫

Ei

κ−1(v · ni)(w · ni),

si(v,w) =
1

H

(∫

ωi

κ−1v · w +

∫

ωi

div(v)div(w)

)
,

for v, w ∈ V
(i)

snap, where ni is a fixed unit normal vector on Ei. The term 1/H is added

so that ai and si have the same scale.

Spectral problem 2: For v ∈ V
(i)

snap, we define ṽ to be the extension of v · ni in⊕
ωj∩ωi 6=φ V

(j)
snap by minimizing the energy norm on ωi, i.e., we find ṽ ∈⊕ωj∩ωi 6=φ V

(j)
snap

such that ṽ · ni = v · ni on Ei and

‖ṽ‖L2(ωi;κ−1) ≤ ‖ϕ‖L2(ωi;κ−1) for all ϕ ∈
⊕

ωj∩ωi 6=φ

V
(j)

snap

with the condition ϕ · ni = v · ni. We take

ai(v,w) =

∫

ωi

κ−1ṽ · w̃, si(v,w) =

∫

ωi

κ−1v · w.

Remark that the eigenvalues of this spectral problem is always bounded above by 1.
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Note that spectral problem 1 involves only the space V
(i)

snap. However, in spectral

problem 2, the calculation of ṽ involves all the V
(j)

snap’s such that ωj and ωi have non-

empty intersection, and so spectral problem 2 requires slightly more calculation. We

note that ṽ is the minimum energy extension of v · ni|Ei
in the space

⊕
ωj∩ωi 6=φ V

(j)
snap.

After solving the spectral problem in a coarse grid neighborhood ωi, we arrange the

eigenfunctions φ
(i)
j in ascending order of the corresponding eigenvalues

λ
(i)
1 ≤ λ

(i)
2 ≤ · · · ≤ λ

(i)
Ji
.

We then let β
(i)
ms be the set of the first li eigenfunctions, where li is a predefined integer

or li is depending on the eigenvalues. The selection of li will be discussed in the Section

3. When the spectral problem is specified and the li’s are selected, we construct the

offline space Vms.

Suppose li is fixed for each coarse grid neighborhood ωi. We define

Λmin = min
Ei∈EH

λ
(i)
li+1.

The value of (Λmin)
−1 indicates the error between the multiscale solution and the so-

lution obtained by using the whole snapshot space. Therefore, we want (Λmin)
−1 to

be as small as possible. However, in spectral problem 2, we can see that (Λmin)
−1 is

bounded from below by 1. Therefore, this spectral problem will only be used in the

online adaptive method, and is shown to be crucial in selecting initial bases.

2.4. Offline adaptive method

In this section, we will introduce an error indicator on each coarse grid neighbor-

hood. Based on this estimator, we develop an offline adaptive enrichment method to

solve equation (2.1) iteratively by adding offline basis functions supported on some

coarse grid neighborhoods in each iteration. In this offline adaptive method, we will

use spectral problem 1.

For each coarse grid neighborhood ωi, we define the residual operator Ri as a linear

functional on V
(i)

snap by

Ri(v) =

∫

ωi

κ−1vms · v −
∫

ωi

div(v)pms ∀v ∈ V
(i)

snap,

where (vms, pms) is the solution pair of (2.2).

We take ‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1 as our error indicator, where

‖Ri‖V (i)
snap

∗ = sup
v∈V

(i)
snap

|Ri(v)|
‖v‖H(div;ωi;κ−1)

.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2016.m1603
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:18:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2016.m1603
https://www.cambridge.org/core


504 H. Y. Chan, E. Chung and Y. Efendiev

This quantity can be used to approximate the error since we have

‖vsnap − vms‖2L2(D;κ−1) ≤ Cerr

∑

Ei∈EH

‖Ri‖2
V

(i)
snap

∗(λ
(i)
li+1)

−1, (2.5)

where vsnap ∈ Vsnap is the solution obtained by solving the equation using the whole

snapshot space Vsnap. In the above inequality (2.5), the constant Cerr = CV H
h

for the

spectral problem 1 with CV depends on the polynomial order of the fine grid basis

functions in Vsnap. For spectral problem 2, Cerr = NT with NT being the maximum

number of faces of the coarse grid blocks. We will prove this inequality in Lemma 3.1.

With this error indicator, we now present the offline adaptive method. In this

method, only spectral problem 1 will be used. We let m ≥ 0 denote the enrichment

level. For each coarse grid neighborhood ωi, we use lmi to represent the number of

eigenfunctions used to form V
(i)

ms . We use V m
ms to denote the space Vms at enrichment

level m.

Offline adaptive method: Fix the number θ and δ0 with 0 < θ, δ0 < 1. We start with

iteration number m = 0. Fix an initial number of offline basis functions l0i for each

coarse grid neighborhood to form the offline space V 0
ms. Then, we go to step 1 below.

Step 1: Find the multiscale solution. We solve for the multiscale solution vmms ∈ V m
ms

and pmms ∈ Q satisfying
∫

D

κ−1vmms · w −
∫

D

div(w)pmms = 0 ∀w ∈ (V m
ms)

0,

∫

D

div(vmms)q =

∫

D

fq ∀q ∈ Q.

(2.6)

Step 2: Compute the error indicators. For each coarse grid neighborhood ωi, we com-

pute the local residual η2i = ‖Ri‖2
V

(i)
snap

∗(λ
(i)
li+1)

−1 and rearrange the residuals in

decreasing order η1 ≥ η2 ≥ · · · ≥ ηNe .

Step 3: Select the coarse grid neighborhoods where basis enrichment is needed. We

take the smallest k such that

θ2
Ne∑

i=1

η2i ≤
k∑

i=1

η2i .

We will enrich the offline space by adding basis functions which are supported in

the coarse grid neighborhoods ω1, . . . , ωk.

Step 4: Add basis functions to the space. For each of the selected coarse grid neighbor-

hood ωi from step 3, we will take the smallest si such that l
(i)
lmi +1/λ

(i)
lmi +si+1 ≤ δ0.

We then set lm+1
i = lmi + si so that si more basis functions are included to form

a larger space V m+1
ms . For the other neighborhoods, we set lm+1

i = lmi . We will

explain the reason for choosing such si in the Section 3.
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After Step 4, we repeat from Step 1 until the global error indicator
∑Ne

i=1 η
2
i is small

enough or the total number of bases reaches certain level. The calculations of all the

local error indicators can be time consuming. However, since the error indicators are

independent of each other, the computation can be done in a parallel approach.

2.5. Online adaptive method

Next, we will present another enrichment algorithm which requires the formation

of new basis functions based on the solution of the previous enrichment level. We

call these functions online basis functions as these basis functions are computed in the

online stage of computations. With the addition of the online basis functions, we can

get a much faster convergence rate than the offline adaptive method.

We first define a linear functional which generalizes the residual operator in the

offline adaptive method. Given a region Ω ⊆ D, let VΩ be the space of functions in

Vsnap which are supported in Ω, i.e. VΩ =
⊕

ωi⊆Ω V
(i)

snap. Let V̂Ω denote the divergence

free subspace of VΩ. Define the linear functional RΩ on VΩ by

RΩ(v) =

∫

Ω
κ−1vmms · v −

∫

Ω
div(v)pmms ∀v ∈ VΩ.

The norm ‖RΩ‖V ∗

Ω
, we use, is given by either

‖RΩ‖V ∗

Ω
= sup

v∈VΩ

RΩ(v)

‖v‖H(div;Ω;κ−1)
or ‖RΩ‖V ∗

Ω
= sup

v∈VΩ

RΩ(v)

‖v‖L2(Ω;κ−1)

depending on which spectral problem is used. Remark that if we restrict RΩ on V̂Ω, we

have

RΩ(v) =

∫

Ω
κ−1vmms · v ∀v ∈ V̂Ω.

For the case of Ω = ωi for some i, RΩ is the same as the residual operator Ri in the

offline adaptive method.

Similar to the offline adaptive method, we use m to indicate the enrichment level

and V m
ms to denote the velocity space at enrichment level m. In the online adaptive

method, we can use either spectral problem 1 or 2. However, since the online basis

functions constructed in each enrichment level are divergence free, we must ensure

that before any enrichment of the space, there is at least one basis function supported

on each coarse grid neighborhood, which is not divergence free. One can easily choose

such basis functions by requiring that the normal component has non-zero mean on the

corresponding coarse edge.

Online adaptive method: Let m = 0. We start by choosing an initial number of

offline basis functions, li, for each coarse grid neighborhood ωi. We use the first li
eigenfunctions from each coarse grid neighborhood ωi to form the initial velocity space

V 0
ms. If the first li eigenfunctions of a coarse grid neighborhood are all divergence free,
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we may artifically construct an extra basis function that is not divergence free and

include it into V 0
ms. We go to step 1 below.

Step 1: Find the multiscale solution. We solve for the multiscale vmms ∈ V m
ms and pmms ∈ Q

as in step 1 of the offline adaptive method.

Step 2: Select non-overlapping regions. We pick non-overlapping regionsΩ1, Ω2, . . . , ΩJ ⊆
D such that each Ωj is a union of some coarse grid neighborhoods.

Step 3: Solve for online basis functions. For each Ωj, we solve for φj ∈ V̂Ωj
such that

RΩj
(v) =

∫

Ωj

κ−1φj · v ∀v ∈ V̂Ωj
,

i.e., we solve for the Riesz representation of RΩj
in V̂Ωj

. Those φj ’s are the

new online basis functions. We update the velocity space by setting V m+1
ms =

V m
ms ⊕ span{φ1, φ2, . . . , φJ}.

Again, after Step 3, we repeat from Step 1 until the global error indicator is small

or we have certain number of basis functions.

In our calculation, after obtaining the online basis function φj in step 3 of the

method, we sometimes normalize it before computing the matrix in the finite element

method. We can see that φj is a projection of the multiscale solution vmms on the space

V̂Ωj
. We have

‖φj‖L2(D;κ−1) = ‖RΩj
‖
V̂ ∗

Ωj

.

When vmms is close to the snapshot solution (the solution vms of equation (2.2) with Vms

being the whole snapshot space) in the region Ωj, by the first equation of (2.2), the

norm of the projection φj will be small. Adding φj directly into calculation will make

the matrix in the calculation close to singular.

3. Convergence analysis

In this section, we will present the proofs for the convergence of both the offline

and the online adaptive method. We first define some notations that will appear in the

results.

We denote the maximum number of faces of a coarse grid block by NT . Let vsnap ∈
Vsnap and psnap ∈ Q denote the snapshot solution, i.e. vsnap and psnap satisfy

∫

D

κ−1vsnap · w −
∫

D

div(w)psnap = 0 ∀w ∈ V 0
snap,

∫

D

div(vsnap)q =

∫

D

fq ∀q ∈ Q,

(3.1)
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with vsnap · n = gH on ∂D. We remark that the required inf-sup condition for (3.1) is

shown in [10].

With these notations, we have the following result for the error indicator. We recall

that vmms and Rm
i stands for the multiscale solution and the corresponding residual on

ωi at the m-th iteration of the offline or the online adaptive method. The following

result holds at each iteration, and we therefore omit the superscript m to simplify the

notations.

Lemma 3.1. We have

‖vsnap − vms‖2L2(D;κ−1) ≤ Cerr

Ne∑

i=1

‖Ri‖2
V

(i)
snap

∗(λ
(i)
li+1)

−1. (3.2)

If spectral problem 1 is used, then Cerr =
CV H
h

and ‖ · ‖
V

(i)
snap

is ‖ · ‖H(div;ωi;κ−1). If spectral

problem 2 is used, then Cerr = NT and ‖ · ‖
V

(i)
snap

is ‖ · ‖L2(ωi;κ−1). The value of CV depends

on the polynomial order of the fine grid basis functions in Vsnap.

Proof. For any v ∈ Vsnap, we can see from the construction of Vsnap that div(v) is

constant on each coarse grid block. Hence, by the second equation of (2.2) and (3.1),

we have
∫

D

div(vsnap − vms)
2

=

∫

D

div(vsnap)div(vsnap − vms)−
∫

D

div(vms)div(vsnap − vms).

= 0.

Thus, div(vms − vsnap) = 0. Next, since vsnap − vms ∈ Vsnap, we have

∫

D

κ−1|vsnap − vms|2

=

∫

D

κ−1(vsnap − vms) · (vsnap − vms)−
∫

D

div(vsnap − vms)(psnap − pms). (3.3)

Using the first equation of (3.1), we get

∫

D

κ−1|vsnap − vms|2

=−
∫

D

κ−1vms · (vsnap − vms) +

∫

D

div(vsnap − vms)pms. (3.4)

By definition, we can write

∫

D

κ−1|vsnap − vms|2 = −〈RD, vsnap − vms〉. (3.5)
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We decompose vsnap − vms as the sum of functions from the V
(i)

snap’s, i.e.,

vsnap − vms =
∑

Ei∈EH

v(i),

where v(i) ∈ V
(i)

snap. Each v(i) can further be written as sum of two components: one in

V
(i)

ms and the other in span(β
(i)
snap \ β(i)

ms). Let v
(i)
r be the latter one. We get

〈RD, vsnap − vms〉 =
Ne∑

i=1

〈Ri, v
(i)〉 =

Ne∑

i=1

〈Ri, v
(i)
r 〉. (3.6)

Using the definition of the spectral problems, we get

Ne∑

i=1

〈Ri, v
(i)
r 〉 ≤

Ne∑

i=1

‖Ri‖(V (i)
snap)∗

‖v(i)r ‖Vωj

≤
Ne∑

i=1

‖Ri‖(V (i)
snap)∗

(si(v
(i)
r , v(i)r ))

1
2 , (3.7)

where ‖·‖Vωi
= ‖·‖H(div;ωi;κ−1) if spectral problem 1 is used, and ‖·‖Vωi

= ‖·‖L2(ωi;κ−1)

if spectral problem 2 is used.

Next, we consider the two spectral problems separately.

Spectral problem 1: For each i, we have

si(v
(i)
r , v

(i)
r ) ≤ H(λ

(i)
li+1)

−1ai(v
(i)
r , v

(i)
r )

≤ H(λ
(i)
li+1)

−1

∫

Ei

κ−1((vsnap − vms) · ni)
2. (3.8)

Thus, by Cauchy Schwarz inequality,

〈RD, vsnap − vms〉

≤
√
H

Ne∑

i=1

‖Ri‖(V (i)
snap)∗

(λ
(i)
li+1)

− 1
2

(∫

Ei

κ−1((vsnap − vms) · ni)
2

) 1
2

≤
√
H

(
Ne∑

i=1

‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1

)1
2
(

Ne∑

i=1

∫

Ei

κ−1((vsnap − vms) · ni)
2

) 1
2

≤
√

CV H

h

(
Ne∑

i=1

‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1

) 1
2

‖vsnap − vms‖L2(D;κ−1),

where CV is a constant depending on the polynomial order of the fine grid basis func-

tions in Vsnap.
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Spectral problem 2: Similar to spectral problem 1, for each j, we have

si(v
(i)
r , v

(i)
r ) ≤ (λ

(i)
li+1)

−1

∫

ωi

κ−1|ṽ(i)|2

≤ (λ
(i)
li+1)

−1

∫

ωi

κ−1|vsnap − vms|2,

where we used the minimum energy property of ṽ(i). Therefore,

〈RD, vsnap − vms〉

≤
(

Ne∑

i=1

‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1

) 1
2
(

Ne∑

i=1

∫

ωi

κ−1|vsnap − vms|2
) 1

2

≤
√

NT

(
Ne∑

i=1

‖RΩj
‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1

) 1
2

‖vsnap − vms‖L2(D;κ−1).

This completes the proof of the lemma. �

From the proof of Lemma 3.1, the error between the multiscale solution and the

snapshot solution is bounded above by the norm of the global residual operator RD,

which in turn can be estimated by the sum of the error indicator ‖Ri‖(V (i)
snap)∗

(λ
(i)
li+1)

−1.

Next, before we show the convergence of the offline adaptive method, we need a

local version of the inf-sup condition in [10]. We will show the proof of this simplier

case and compute the constant in the result. Here is the statement.

Lemma 3.2. For coarse grid neighborhood ωi, write ωi = K1 ∪K2 where K1 and K2 are

the two coarse grid blocks composing ωi. Then, for any p ∈ Q, we have

‖p− p‖L2(ωi) = Ci
sup sup

v∈V
(i)

ms

∫
ωi

div(v)p

‖v‖L2(ωi;κ−1)
, (3.9)

where p = 1
|ωi|

∫
ωi
p and Ci

sup is the infimum of
√

|K1||K2|
|K1|+|K2|

‖v‖L2(ωi;κ−1) over all v ∈ V
(i)

ms

with
∫
Ei

v · ni = 1.

Proof. Note that ∫

ωi

div(v)p = p

∫

∂ωi

v · n = 0.

We may assume p = 0. Let p0 = p/‖p‖L2(ωi). Using this notation, we have

∫

ωi

div(v)p = ‖p‖L2(ωi)

(
p0|K1

∫

K1

div(v) + p0|K2

∫

K2

div(v)

)

= ‖p‖L2(ωi)(p0|K1 − p0|K2)

∫

Ei

v · ni. (3.10)
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Finally, we evaluate (p0|K1 − p0|K2). Since p0 = 0, we have

|K1|(p0|K1) + |K2|(p0|K2) = 0.

Using ‖p0‖L2(ωi) = 1, we get

|K1|(p0|K1)
2 + |K2|(p0|K2)

2 = 1.

Using these two, one can check that

p0|K1 − p0|K2 = ±
√

1

|K1|
+

1

|K2|
. (3.11)

Hence, we have

sup
v∈V

(i)
ms

∫
ωi

div(v)p

‖v‖L2(ωi;κ−1)
= ‖p‖L2(ωi)

√
1

|K1|
+

1

|K2|
sup

v∈V
(i)

ms

∫
Ei

v · ni

‖v‖L2(ωi;κ−1)
,

which completes the proof. �

We define some symbols before we move on to the proof of the convergence. Let

Rm
i denote the residual operator Ri using the solution (vmms, p

m
ms). We define

Sm
i = ‖Rm

i ‖
(V

(i)
snap)∗

(λ
(i)
lmi +1)

− 1
2 . (3.12)

This symbol Sm
i is indeed the error indicator ηi at the m-th enrichment level. We have

the following lemma for this symbol.

Lemma 3.3. Let Sm
i be the expression defined in (3.12). Then, for any α > 0, we have

(Sm+1
i )2 ≤ (1 + α)

λ
(i)
lmi +1

λ
(i)

lm+1
i +1

(Sm
i )2 + (1 + α−1)Di

m‖vm+1
ms − vmms‖2L2(ωi;κ−1),

where Di
m = 2(λ

(i)

lm+1
i +1

)−1(max{Ci,m
sup , 1})2 and Ci,m

sup is the constant from Lemma 3.2 at

the m-th enrichment level.

Proof. For any v ∈ V
(i)

snap, using the definition of Rm
i , we have

Rm+1
i (v) = Rm

i (v) +

∫

ωi

κ−1(vm+1
ms − vmms) · v −

∫

ωi

div(v)(pm+1
ms − pmms).

Taking supremum with respect to v, we get

Sm+1
i ≤


 λ

(i)
lmi +1

λ
(i)

lm+1
i +1




1
2

Sm
i + I, (3.13)
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where

I = (λ
(i)

lm+1
i +1

)−
1
2 sup
v∈V

(i)
snap

∫
ωi
κ−1(vm+1

ms − vmms) · v −
∫
ωi

div(v)(pm+1
ms − pmms)

‖v‖H(div;ωi;κ−1)
.

Next, we have

∫

ωi

κ−1(vm+1
ms − vmms) · v −

∫

ωi

div(v)(pm+1
ms − pmms)

=

∫

ωi

κ−1(vm+1
ms − vmms) · v −

∫

ωi

div(v)(pm+1
ms − pmms − (pm+1

ms − pmms))

≤ ‖vm+1
ms − vmms‖L2(ωi;κ−1)‖v‖L2(ωi;κ−1)

+ ‖div(v)‖L2(ωi)‖pm+1
ms − pmms − (pm+1

ms − pmms)‖L2(ωi)

where (pm+1
ms − pmms) is the average value of pm+1

ms − pmms over ωi. Using Lemma 3.2, we

get

‖pm+1
ms − pmms − (pm+1

ms − pmms)‖L2(ωi) ≤ Ci,m
sup sup

v∈V
(i),m

ms

∫
D

div(v)(pm+1
ms − pmms)

‖v‖L2(ωi;κ−1)

≤ Ci,m
sup sup

v∈V
(i),m

ms

∫
D
κ−1(vm+1

ms − vmms) · v
‖v‖L2(ωi;κ−1)

≤ Ci,m
sup ‖vm+1

ms − vmms‖L2(ωi;κ−1),

where Ci,m
sup and V

(i),m
ms denote the constant Ci

sup in Lemma 3.2 and the space V
(i)

ms at

enrichment level m. Hence, we estimate I as

I ≤ (λ
(i)

lm+1
i +1

)−
1
2

√
2max{Ci,m

sup , 1}‖vm+1
ms − vmms‖L2(ωi;κ−1). (3.14)

Therefore we have

Sm+1
i ≤


 λ

(i)
lmi +1

λ
(i)

lm+1
i +1




1
2

Sm
i + (λ

(i)

lm+1
i +1

)−
1
2

√
2max{Ci,m

sup , 1}‖vm+1
ms − vmms‖L2(ωi;κ−1).

And so, we get

(Sm+1
i )2 ≤ (1 + α)

λ
(i)
lmi +1

λ
(i)

lm+1
i

+1

(Sm
i )2 + (1 + α−1)Di

m‖vm+1
ms − vmms‖2L2(ωi;κ−1),

where Di
m = 2(λ

(i)

lm+1
i +1

)−1(max{Ci,m
sup , 1})2. �

Using this lemma, we have the following result for the convergence of the offline

adaptive method.
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Theorem 3.1. Using the notations in the offline adaptive method, there exist positive

constants δ0, ρ and a decreasing sequence of positive numbers {Lj} such that the following

contracting property holds

‖vsnap − vm+1
ms ‖2L2(D;κ−1) +

1

Lj

Ne∑

i=1

(Sm+1
i )2

≤ ǫj

(
‖vsnap − vmms‖2L2(D;κ−1) +

1

Lj

Ne∑

i=1

(Sm
i )2

)
, (3.15)

for any j ≤ m, where δ0 and ρ satisfy

λ
(i)
lmi +1

λ
(i)

lm+1
i +1

≤ δ0 < 1− (1− δ0)θ
2 < ρ < 1, (3.16)

for any coarse grid neighborhood ωi that are selected to add basis functions, and

ǫj =
CerrLj + ρ

CerrLj + 1
. (3.17)

The definition of {Lj} is given by (3.20) below.

Proof. In the offline adaptive method, we fixed 0 < θ < 1 and we choose an index

set I such that

θ2
Ne∑

i=1

η2i ≤
∑

i∈I

η2i (3.18)

We write
Ne∑

i=1

(Sm+1
i )2 =

∑

i∈I

(Sm+1
i )2 +

∑

i 6∈I

(Sm+1
i )2. (3.19)

Using Lemma 3.3, we have

Ne∑

i=1

(Sm+1
i )2 ≤

∑

i∈I


(1 + α)

λ
(i)
lmi +1

λ
(i)

lm+1
i +1

(Sm
i )2 + (1 + α−1)Di

m‖vm+1
ms − vmms‖2L2(ωi;κ−1)




+
∑

i 6∈I

(
(1 + α)(Sm

i )2 + (1 + α−1)Di
m‖vm+1

ms − vmms‖2L2(ωi;κ−1)

)
.

We define

Lm = NT (1 + α−1) max
Ei∈EH

Di
m, (3.20)

and we assume the number of additional offline basis functions in each enrichment

level is chosen such that

max
i∈I

λ
(i)
lmi +1

λ
(i)

lm+1
i +1

≤ δ0 < 1, (3.21)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2016.m1603
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:18:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2016.m1603
https://www.cambridge.org/core


Adaptive Mixed GMsFEM for Flows in Heterogeneous Media 513

where δ0 is a fixed constant. Using this, we get

Ne∑

i=1

(Sm+1
i )2 ≤ (1 + α)

Ne∑

i=1

(Sm
i )2 − (1 + α)(1 − δ0)θ

2
Ne∑

i=1

(Sm
i )2

+ Lm‖vm+1
ms − vmms‖2L2(D;κ−1).

We let ρ = (1+α)(1− (1− δ0)θ
2) and take α small enough so that 0 < ρ < 1. Observed

that {Lm} is a decreasing sequence, so we may take any j ≤ m. We now have

Ne∑

i=1

(Sm+1
i )2 ≤ ρ

Ne∑

i=1

(Sm
i )2 + Lj‖vm+1

ms − vmms‖L2(D;κ−1). (3.22)

Note that div(vm+1
ms −vmms) = 0 and vm+1

ms −vmms ∈ V m+1
ms . Therefore, by the first equation

of (3.1) and (2.6), we get
∫

D

κ−1(vsnap − vm+1
ms ) · (vm+1

ms − vmms) = 0, (3.23)

and so

‖vsnap − vmms‖2L2(D;κ−1) = ‖vsnap − vm+1
ms ‖2L2(D;κ−1) + ‖vm+1

ms − vmms‖2L2(D;κ−1),

which means

‖vm+1
ms − vmms‖2L2(D;κ−1) = ‖vsnap − vmms‖2L2(D;κ−1) − ‖vsnap − vm+1

ms ‖2L2(D;κ−1).

Putting this into (3.22), we get

‖vsnap − vm+1
ms ‖2L2(D;κ−1) +

1

Lj

Ne∑

i=1

(Sm+1
i )2

≤‖vsnap − vmms‖2L2(D;κ−1) +
ρ

Lj

Ne∑

i=1

(Sm
i )2.

From Lemma 3.1, we have

‖vsnap − vmms‖L2(D;κ−1) ≤ Cerr

Ne∑

i=1

(Sm
i )2. (3.24)

Hence,

‖vsnap − vm+1
ms ‖2L2(D;κ−1) +

1

Lj

Ne∑

i=1

(Sm+1
i )2

≤(1− β)‖vsnap − vmms‖2L2(D;κ−1) +

(
βCerr +

ρ

Lj

) Ne∑

i=1

(Sm
i )2.
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Finally, we take β = 1−ρ
1+CerrLj

to get

‖vsnap − vm+1
ms ‖2L2(D;κ−1) +

1

Lj

Ne∑

i=1

(Sm+1
i )2

≤(1− β)‖vsnap − vmms‖2L2(D;κ−1) +
1− β

Lj

Ne∑

i=1

(Sm
i )2,

which completes the proof. �

From Theorem 3.1, we can see that the convergence rate depends on the two con-

stants θ and δ0, which are fixed before we carry out the enrichment algorithm. The

constant θ controls the number of coarse grid neighborhoods, where enrichment is

needed. And the constant δ0 is related to the number of basis functions we have to add

in each coarse grid neighborhood. Note that we have the following inequality for the

convergence rate

ǫj > 1− (1− δ0)θ
2

CerrLj + 1
.

Thus, in order to have a fast convergence, we need a small δ0 and a large θ, which

means there is a tradeoff between the convergence rate and the number of basis func-

tions used.

Now, we state the convergence result for the online adaptive method.

Theorem 3.2. Using the notations in the online adaptive methods. We have

‖vsnap − vm+1
ms ‖2L2(D;κ−1)

≤


1−

∑J
j=1 ‖RΩj

‖2
V̂ ∗

Ωj

Cerr

∑Ne

i=1 ‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1


 ‖vsnap − vmms‖2L2(D;κ−1). (3.25)

Proof. For any v ∈ V m+1
ms with div(v) = 0, we have

‖vsnap − vm+1
ms + v‖2L2(D;κ−1)

= ‖vsnap − vm+1
ms ‖2L2(D;κ−1) + ‖v‖2L2(D;κ−1) + 2

∫

D

κ−1(vsnap − vm+1
ms ) · v

= ‖vsnap − vm+1
ms ‖2L2(D;κ−1) + ‖v‖2L2(D;κ−1)

≥ ‖vsnap − vm+1
ms ‖2L2(D;κ−1). (3.26)

Let the new online basis functions φ1, φ2, . . . , φJ be normalized such that

‖φj‖L2(Ωj ;κ−1) = 1.
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Let v = vm+1
ms − vmms + α1φ1 + · · · + αJφJ where

αj =

∫

Ωj

κ−1vmms · φj = ‖RΩj
‖
V̂ ∗

Ωj

.

Check that v is divergence free. Using (3.25),

‖vsnap − vm+1
ms ‖2L2(D;κ−1)

≤ ‖vsnap − vmms + α1φ1 + · · ·+ αJφJ‖2L2(D;κ−1)

= ‖vsnap − vmms‖2L2(D;κ−1) + ‖α1φ1 + · · · + αJφJ‖2L2(D;κ−1)

+ 2

∫

D

κ−1(vsnap − vmms) · (α1φ1 + · · · + αJφJ)

= ‖vsnap − vmms‖2L2(D;κ−1) + ‖α1φ1 + · · · + αJφJ‖2L2(D;κ−1)

− 2

∫

D

κ−1vmms · (α1φ1 + · · ·+ αJφJ). (3.27)

Recall that Ω1, . . . , ΩJ are non-overlapping and each φj is supported on Ωj. Therefore,

‖α1φ1 + · · ·+ αJφJ‖2L2(D;κ−1) − 2

∫

D

κ−1vmms · (α1φ1 + · · ·+ αJφJ)

= −
(
‖RΩ1‖2V̂ ∗

Ω1

+ · · ·+ ‖RΩJ
‖2
V̂ ∗

ΩJ

)
. (3.28)

Hence, we have

‖vsnap − vm+1
ms ‖2L2(D;κ−1)

≤ ‖vsnap − vmms‖2L2(D;κ−1) −
J∑

j=1

‖RΩj
‖2
V̂ ∗

Ωj

=


1−

∑J
j=1 ‖RΩj

‖2
V̂ ∗

Ωj

‖vsnap − vmms‖2L2(D;κ−1)


 ‖vsnap − vmms‖2L2(D;κ−1)

≤


1−

∑J
j=1 ‖RΩj

‖2
V̂ ∗

Ωj

Cerr

∑Ne

i=1 ‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1


 ‖vsnap − vmms‖2L2(D;κ−1),

by Lemma 3.1. Hence the proof is complete. �

First, we note that it can be shown that

1−

∑J
j=1 ‖RΩj

‖2
V̂ ∗

Ωj

Cerr

∑Ne

i=1 ‖Ri‖2
(V

(i)
snap)∗

(λ
(i)
li+1)

−1
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is positive. In Theorem 3.2, we can see that the convergence rate of the online adaptive

method can be small if the term (Λj
min)

−1 is large. This term is determined at the be-

ginning of the method when the initial number of basis functions li is fixed. Therefore,

we should choose li so that λ
(i)
li+1 is significantly large. We will demonstrate the effect

of choosing different initial number of basis functions in the next section.

In the above theorems, we derive error bounds for the difference between the mul-

tiscale solution and the snapshot solution. Regarding the difference between the snap-

shot solution and the fine-scale solution, an error bound is proven in [10]. In particular,

we have

‖vh − vsnap‖2L2(D;κ−1) ≤ C max
K∈T H

(
κ−1

min,K

) Ne∑

i=1

‖f − f‖2L2(Ki)

where κmin,K is the minimum of κ over K, f is a piecewise constant function with

respect to T H such that f = |K|−1
∫
K
f for each coarse element K and C is a constant

independent of κ and mesh sizes. This represents a coarse grid error.

4. Numerical Results

In this section, we will present some examples using both the offline and the online

adaptive methods. To test the efficiency of the methods, we will compare the error

of the solution from the adaptive methods with the error of the solution obtained by

uniform enrichment of the space, i.e. we increase the number of basis functions in all

the coarse grid neighborhoods uniformly. We will also compare the error of the solution

using the online adaptive method with different initial number of basis functions on

each coarse grid neighborhood and different contrast in the permeability field. From

the comparison in the online adaptive method, we can see that the convergence rate

depends on the initial number of offline bases used. And if the initial basis is chosen in

the appropriate way, the convergence of online adaptive method will be independent

of the contrast. In the examples, we will use the following permeability fields with

background value one.

Fig. 1 shows the permeability fields with background value one (shown in blue) and

high contrasts (shown in red). In the numerical examples, we will vary the contrast so

as to see the convergence rate of the adaptive methods with different contrast values.

We will use the follow snapshot error to indicate the accuracy of the methods.

e =
‖vsnap − vms‖L2(D;κ−1)

‖vsnap‖L2(D;κ−1)
.

4.1. Comparing the adaptive methods with uniform enrichment

We compare the efficiency of the adaptive methods in this example. Consider equa-

tion (2.1) on the domain [0, 1]2 with homogeneous boundary condition, i.e. g = 0. We

use coarse grid size 15 × 15 and fine grid size 40 × 40 on each coarse grid. We use the
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(a) κ1 (b) κ2

Figure 1: Permeability fields with high contrasts (denoted in red).

permeability field κ1 with contrast values 1e4 and 1e-4. The source function f is set

to be 1 on top left coarse grid block, −1 on bottom right coarse grid block and zero

elsewhere. We form the snapshot basis using spectral problem 1.

We solve the equation in the following ways.

Offline adaptive method: We use the offline adaptive method with initial number of

bases per coarse grid neighborhood equal to 2, θ = 0.2 and δ0 = 0.5.

Online adaptive method: We use the online adaptive method with initial basis func-

tions obtained from spectral problem 1. The regions Ω1, . . . , ΩJ are

(a) non-overlapping coarse grid neighborhoods; and

(b) non-overlapping 2× 2 coarse grid blocks.

Uniform enrichment: We solve the equation again by increasing the number of bases

in each coarse grid neighborhood uniformly from 2 to 40.

The results are compared by plotting the error e against the total number of bases

used (Fig. 2).

From Fig 2, we can see that the snapshot error from the adaptive methods is always

smaller than the snapshot error obtained from uniformly increasing the number of basis

functions. Moreover, the rate of convergence of the online adaptive method is faster

than that of the offline adaptive method. Note that the online approaches require

computations during the online stage of the simulations. From Table 1, we can also

see the difference in the convergence rate between the offline adaptive method and

uniform enrichment. This shows that the error indicator in the offline method can

successfully show the coarse grid neighborhoods with insufficient bases. Throughout

the paper, the error tables show the errors of successive iterations. In particular, the

first row of errors shows the errors for the initial space, the second row of errors shows

the errors for the first iteration, and so on.
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Table 1: Snapshot error of the offline adaptive method compared to the GMsFEM with the same number
of basis functions.

(a) contrast = 1e4

DOF e (uniform) e (offline)

2(840) 0.0567 0.0567

8(3360) 0.0123 0.0012

14(5880) 0.0066 2.71e-4

20(8400) 0.0040 7.57e-5

26(10920) 0.0023 2.11e-5

32(13440) 0.0011 6.01e-6

38(15960) 5.76e-4 4.61e-7

(b) contrast = 1e-4

DOF e (uniform) e (offline)

2(840) 0.0452 0.0452

8(3360) 0.0115 0.0017

14(5880) 0.0059 2.75e-4

20(8400) 0.0039 8.49e-5

26(10920) 0.0019 2.98e-5

32(13440) 9.57e-4 7.54e-6

38(15960) 1.60e-4 7.84e-7

(a) contrast = 1e4 (b) contrast = 1e-4

Figure 2: Snapshot error of offline and online adaptive methods compared to the snapshot error of uniform
enrichment for contrast 1e4 and 1e-4.

Table 2: Snapshot error of the online adaptive method using two different choices of Ω1, . . . , ΩJ .

(a) contrast = 1e4

DOF e (a) e (b)

2(840) 0.0567 0.0567

3(1260) 0.0065 0.0042

4(1680) 0.0033 8.71e-5

5(2100) 6.20e-4 4.08e-6

6(2520) 2.56e-4 1.74e-7

7(2940) 9.21e-6 2.81e-9

8(3360) 1.90e-7 3.42e-11

9(3780) 4.73e-10 5.58e-12

(b) contrast = 1e-4

DOF e (a) e (b)

2(840) 0.0452 0.0452

3(1260) 0.0056 0.0045

4(1680) 0.0028 1.36e-4

5(2100) 4.56e-4 5.19e-6

6(2520) 9.57e-5 4.94e-7

7(2940) 4.97e-6 3.22e-9

8(3360) 1.03e-7 1.14e-11

9(3780) 4.84e-10 6.80e-13

For the online adaptive method with the two choices of regions, the one with 2× 2
coarse grid blocks give a faster convergence rate, as observed from the Table 2. This
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Table 3: Snapshot error of the online adaptive method using spectral problem 1 with 1 initial bases (Λmin =

0.0093), 2 initial bases (Λmin = 0.0146), 3 initial bases (Λmin = 2.5183) and 4 initial bases (Λmin = 5.0668).
Contrast is 1e-4.

DOF e (1 basis) e (2 basis) e (3 basis) e (4 basis)

1(112) 0.2575 / / /

2(224) 0.1454 0.0928 / /

3(336) 0.1254 0.0371 0.0357 /

4(448) 0.0980 0.0326 0.0062 0.0211

5(560) 0.0887 0.0200 0.0023 0.0031

6(672) 0.0880 0.0042 1.68e-4 7.29e-4

7(784) 0.0737 1.73e-4 1.68e-5 6.02e-5

8(896) 0.0269 8.65e-7 1.87e-7 2.56e-6

9(1008) 0.0019 3.03e-9 1.99e-9 2.04e-8

can be explained by the number of coarse grid neighborhoods a region contains. In (a),

each region contains one coarse grid neighborhood while in (b), each region contains

four. Therefore, the space V̂Ωi
for the calculation of the projection φj is larger in (b)

than in (a) and captures more distant effects. Hence, the result is better in (b).

4.2. Online adaptive method with different number of initial basis func-
tions

In this example, we focus on the online adaptive method and we want to see the

effect of using different number of initial basis functions in the method. We consider

permeability fields κ2 with the contrast 1e-4. For We divide the domain [0, 1]2 into 8×8
coarse grids and divide each coarse grid into 32 × 32 fine grids. The source function f
is the same as the previous example. In each enrichment level, the regions Ω1, . . . , ΩJ

are chosen to be disjoint coarse grid neighborhoods.

We solve the equation using 1, 2, 3 and 4 initial basis functions obtained from

solving the two spectral problems. We plot the snapshot error e against the number of

basis functions used in Fig. 3 and the value of e is shown in Tables 3 and 4.

From Fig. 3, one can observe that if we use only 1 initial basis function, the rate of

convergence is slow at the beginning. Similar behaviour can be seen if 2 initial basis

functions are used, yet the convergence is faster. Using 3 initial basis functions seems to

be the optimal choice in the sense that the snapshot error cannot be smaller when more

initial basis functions are used. This can be explained by the value Λmin. In the online

adaptive method, this value depends on the initial basis functions obtained from the

spectral problems. Theorem 3.2 shows that the rate of convergence is bounded above

by a value which decreases when Λmin increases. When spectral problem 1 is used,

the values of Λmin are 0.0093, 0.0146, 2.5183 and 5.0068 when 1, 2, 3 and 4 initial

basis functions are used respectively. When spectral problem 2 is used, the values of

Λmin are 0.0016, 0.0247, 0.4939 and 0.7881 when 1, 2, 3 and 4 initial basis functions

are used respectively. Therefore, the values of Λmin corresponding to the first two basis

functions are small. This suggests a criterion for choosing the initial number of basis

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2016.m1603
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:18:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2016.m1603
https://www.cambridge.org/core


520 H. Y. Chan, E. Chung and Y. Efendiev

(a) spectral problem 1 (b) spectral problem 2

Figure 3: Snapshot error of online adaptive method with different number of initial basis functions.

Table 4: Snapshot error of the online adaptive method using spectral problem 2 with 1 initial bases (Λmin =

0.0016), 2 initial bases (Λmin = 0.0247), 3 initial bases (Λmin = 0.4939) and 4 initial bases (Λmin = 0.7881).
Contrast is 1e-4.

DOF e (1 basis) e (2 basis) e (3 basis) e (4 basis)

1(112) 0.5237 / / /

2(224) 0.1684 0.2616 / /

3(336) 0.1417 0.0612 0.1215 /

4(448) 0.1319 0.0498 0.0116 0.0625

5(560) 0.1293 0.0098 7.71e-4 0.0017

6(672) 0.1291 2.48e-4 1.46e-5 3.49e-5

7(784) 0.0954 4.39e-6 1.84e-7 4.10e-7

8(896) 0.0331 2.51e-8 5.31e-10 1.08e-9

9(1008) 0.0034 4.25e-11 1.83e-12 1.17e-12

function which is to include all basis functions with small eigenvalue from the spectral

problem.

Remark that the magnitude of Λmin depends on the choice of the spectral problem.

For spectral problem 1, both the constant Cerr and Λmin grow with the ratio H/h. For

spectral problem 2, Cerr is independent of the mesh size and Λmin is always bounded

above by 1.

4.3. Online adaptive method with different contrasts

Next, we want to see the effect of varying the contrast to the online adaptive

method. Similar to the previous example, we will start with different number of initial

basis functions. Equation (2.1) is solved in permeability field κ1 with three different

contrasts 1e-2, 1e-4 and 1e-6. The coarse grid size is 15 × 15 and the fine grid size is

40× 40 on each coarse grid. The source function f is, again, 1 at top left corner and −1
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(a) 1 initial basis function. (b) 2 initial basis functions.

(c) 3 initial basis functions. (d) 4 initial basis functions.

Figure 4: Snapshot error of online adaptive method using spectral problem 1 with different number of initial
basis functions and different contrast.

at bottom right corner. For each number of initial basis functions, we plot the snapshot

error of the method with the three different contrasts (Figs. 4 and 5). We also list the

value of the snapshot error in Tables 5 and 6.

From Fig. 4, we can see that when spectral problem 1 is used, the change in the

contrast has almost no effect on the snapshot error if we start with 2, 3 or 4 basis

functions on each coarse grid neighborhood. This can also be confirmed by looking at

Table 5. However, if we use only 1 initial basis function, the contrast makes a huge

difference. The convergence rate decreases as the contrast changes from 1e-2 to 1e-4

and then 1e-6. This result can also be explained by the value of Λmin. The captions

in Table 5 list the values of Λmin corresponding to different number of initial basis

functions and different contrast value. These values are consistent with Fig. 4 since we

can observe almost no changes in Λmin as the contrast varies if we use 2, 3 or 4 initial

basis functions, while Λmin decreases with the contrast for the case of 1 initial basis

function.
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Table 5: Snapshot error of online adaptive method using spectral problem 1 with different number of initial
basis functions and different contrast.

(a) 1 initial basis function. Values of Λmin are

0.0776, 0.0027 and 5.12e-5 for contrasts 1e-2, 1e-

4 and 1e-6, respectively.

DOF 1e-2 1e-4 1e-6

1(420) 0.1772 0.2039 0.2130

2(840) 0.0560 0.0753 0.0839

3(1260) 0.0399 0.0620 0.0699

4(1680) 0.0151 0.0597 0.0676

5(2100) 0.0039 0.0595 0.0674

6(2520) 3.73e-4 0.0567 0.0674

7(2940) 1.47e-4 0.0317 0.0643

8(3360) 1.22e-7 0.0010 0.0466

9(3780) 2.43e-10 8.41e-6 0.0035

(b) 2 initial basis functions. Values of Λmin are 1.9511,

1.9264 and 1.9262 for contrasts 1e-2, 1e-4 and 1e-6,

respectively.

DOF 1e-2 1e-4 1e-6

2(840) 0.0472 0.0452 0.0399

3(1260) 0.0060 0.0056 0.0054

4(1680) 0.0030 0.0028 0.0027

5(2100) 5.47e-4 4.56e-4 4.42e-4

6(2520) 1.41e-4 9.57e-5 9.04e-5

7(2940) 1.11e-5 4.97e-6 5.29e-6

8(3360) 1.20e-7 1.03e-7 1.10e-7

9(3780) 2.67e-10 4.84e-10 6.16e-10

(c) 3 initial basis functions. Values of Λmin are

3.6204, 3.5980 and 3.5978 for contrasts 1e-2, 1e-

4 and 1e-6, respectively.

DOF 1e-2 1e-4 1e-6

3(1260) 0.0341 0.0317 0.0303

4(1680) 0.0041 0.0037 0.0037

5(2100) 0.0016 0.0014 0.0014

6(2520) 2.40e-4 2.15e-4 2.02e-4

7(2940) 3.26e-5 2.74e-5 2.19e-5

8(3360) 7.28e-7 6.45e-7 6.13e-7

9(3780) 1.15e-8 3.86e-9 6.83e-9

(d) 4 initial basis functions. Values of Λmin are

5.2765, 5.2396 and 5.2656 for contrasts 1e-2, 1e-

4 and 1e-6, respectively.

DOF 1e-2 1e-4 1e-6

4(1680) 0.0257 0.0240 0.0239

5(2100) 0.0024 0.0024 0.0024

6(2520) 6.92e-4 6.98e-4 6.99e-4

7(2940) 9.78e-5 1.01e-4 9.92e-5

8(3360) 7.32e-6 6.63e-6 6.62e-6

9(3780) 1.26e-7 9.01e-8 8.12e-8

Similar behaviour can be observed when spectral problem 2 is used. We can observe

from Table 5 that if we start with one basis function per coarse grid neighborhood, the

larger the contrast, the slower is the convergence rate. However, Fig. 5 also suggests

that spectral problem 2 is less resistent to changes in the contrast than spectral problem

1. When 2, 3 or 4 initial basis functions are used, the snapshot error is nearly the same

for contrast 1e-2 and 1e-4, yet the error increases as the contrast changes from 1e-4

to 1e-6. This jump is larger for 4 initial basis functions than 2 initial basis functions.

Although spectral problem 2 is not as good as spectral problem 1 in the aspect of the

resistance to changes in contrast, by comparing Tables 5 and 6, we can see that the

convergence rate is faster using spectral problem 2 than spectral problem 1.

From the above observations, we know that the convergence rate of the online

adaptive method can be independent of the contrast if we choose the initial basis func-

tions well. Basis functions corresponding to small value of Λmin are contrast-dependent,

and we should include them in the initial basis. When Λmin is large, we may expect

that the online adaptive method will perform well with large contrast.
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(a) 1 initial basis function. (b) 2 initial basis functions.

(c) 3 initial basis functions. (d) 4 initial basis functions.

Figure 5: Snapshot error of online adaptive method using spectral problem 2 with different number of initial
basis functions and different contrast.

4.4. Discussion on computational saving for online adaptive method

In the previous sections, we see that the online adaptive method is able to produce

more accurate solutions with much fewer number of basis functions compared with

the non-adaptive offline approach [10]. In this section, we will discuss computational

advantages of the online method over the non-adaptive offline approach. The compu-

tational gain is due to the fact that adaptive calculations of few (1 − 2) online basis

functions in a few selected coarse-grid regions can provide a substantial error decay

for many heterogeneous problems. To achieve this level of the error decay, one may

need many offline basis functions even when offline adaptivity is used. In the online

adaptive method, one needs to solve local problems in order to obtain the online basis

functions. As we see in the convergence analysis and numerical results, one needs only

a couple of these online basis functions to obtain a very accurate solution. On the other

hand, for the non-adaptive offline approach [10], the convergence is typically faster

when the first few basis functions are added, but slows down as more basis functions
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Table 6: Snapshot error of online adaptive method using spectral problem 2 with different number of initial
basis functions and different contrast.

(a) 1 initial basis function. Values of Λmin are 0.0510,

9.41e-4 and 4.33e-5 for 1e-2, 1e-4 and 1e-6 respec-

tively.

DOF 1e-2 1e-4 1e-6

1(420) 0.5506 0.5716 0.5810

2(840) 0.0799 0.0968 0.1054

3(1260) 0.0477 0.0719 0.0803

4(1680) 0.0021 0.0692 0.0778

5(2100) 0.0045 0.0690 0.0776

6(2520) 9.73e-4 0.0649 0.0776

7(2940) 2.23e-5 0.0463 0.0735

8(3360) 2.20e-7 0.0298 0.0401

9(3780) 3.42e-10 4.1024e-4 0.0184

(b) 2 initial basis functions. Values of Λmin are

0.3176, 0.3823 and 0.3790 for 1e-2, 1e-4 and 1e-6

respectively.

DOF 1e-2 1e-4 1e-6

2(840) 0.2909 0.3057 0.3164

3(1260) 0.0270 0.0283 0.0477

4(1680) 0.0050 0.0052 0.0116

5(2100) 6.66e-4 9.15e-4 0.0017

6(2520) 3.44e-5 4.67e-5 8.54e-5

7(2940) 8.12e-7 1.02e-6 2.53e-6

8(3360) 4.13e-9 5.20e-9 2.06e-8

9(3780) 1.76e-11 2.11e-11 8.78e-11

(c) 3 initial basis functions. Values of Λmin are

0.6460, 0.4882 and 0.5763 for 1e-2, 1e-4 and 1e-

6 respectively.

DOF 1e-2 1e-4 1e-6

3(1260) 0.1202 0.1418 0.1319

4(1680) 0.0128 0.0148 0.0357

5(2100) 0.0014 0.0020 0.0043

6(2520) 6.66e-5 7.69e-5 5.68e-4

7(2940) 1.02e-6 1.73e-6 1.14e-5

8(3360) 5.19e-9 9.20e-9 9.76e-8

9(3780) 9.61e-12 2.29e-11 1.13e-9

(d) 4 initial basis functions. Values of Λmin are

0.7697, 0.7650 and 0.7307 for 1e-2, 1e-4 and 1e-

6 respectively.

DOF 1e-2 1e-4 1e-6

4(1680) 0.0824 0.0930 0.1128

5(2100) 0.0046 0.0044 0.0315

6(2520) 1.84e-4 1.99e-4 0.0035

7(2940) 2.17e-6 3.15e-6 4.84e-5

8(3360) 1.05e-8 1.23e-8 3.25e-7

9(3780) 2.02e-11 3.65e-11 1.02e-9

are added (see [10] for more details). Thus, the non-adaptive offline approach [10]

will, in general, need many more basis functions in order to achieve a certain level of

accuracy. Therefore, the additional computational cost incurred in the construction of

online basis functions pays off. In the most general setting, it is difficult to quantify the

savings in computational times, as the numbers of offline and online basis function vary

for different heterogeneous coefficients. To illustrate that the online adaptive method

can achieve savings in computational times, we consider the example in Section 4.1

with contrast 1e-6. We set a tolerance of 0.5% in relative error, and compute a solu-

tion using our online adaptive method and the non-adaptive offline approach. For the

online adaptive method, we use 3 initial offline basis functions. After 1 online basis

function, we obtain a solution with relative error of 0.37% and with a computational

time of 8.17 seconds. On the other hand, for the non-adaptive approach, one cannot

determine a-priori the number of basis functions, so we add basis functions uniformly.

The relative error is 0.44% with the use of 17 basis functions per coarse neighborhood.

and with a computational time of 13.45 seconds. Therefore, we see that the online

adaptive method can give savings in computational times. We remark again that the
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use of online basis functions is to make the error going down fast by adding only few

basis functions, which cannot be achieved by using only offline basis functions as one

cannot determine the number of offline basis functions required for a certain level of

accuracy.

5. Conclusion

In this paper, we present two adaptive enrichment algorithms for the mixed GMs-

FEM. The first one is an offline adaptive method which adds basis computed from the

offline stage. This method is based on a local error indicator which is the norm of a

residual operator restricted on a local space. Offline basis functions are added to those

coarse grid neighborhoods with large errors. The other algorithm is an online adaptive

method. Online basis functions are constructed by solving local problems based on a

residual operator. We select non-overlapping regions in the domain and solve for an

online basis function on each of the regions.

We show theoretically the convergence of the two methods. For the offline method,

the rate of convergence depends on two parameters, which control the number of

coarse grid neighborhoods to be selected to add basis functions and the number of

basis functions to be added. The convergence rate of the online method depends on the

eigenvalues corresponding to those basis functions that are not included in the initial

basis. The larger the above mentioned eigenvalues, the faster is the convergence rate.

The numerical results are consistent with these findings. It is also shown numerically

that if the basis functions corresponding to the eigenvalues that are contrast-dependent

are included in the initial basis, the online adaptive method will be resistant to the

change in the contrast value. Those eigenvalues are the smallest ones and therefore

the corresponding basis functions should be included in the initial basis to speed up

the convergence.
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