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the Laplace, Stokes, Navier-Lamé, and the semi-discrete eddy current equations.
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1. Introduction

Numerical simulation in engineering and science involves all kinds of errors ranging
from the modeling of the problem to round-off errors. We are concerned with problems
that can be formulated as the linear equation

A (p,u) =1L

in function spaces Q and V with .&/(p,u) and £ in (Q x V)*. This paper is devoted to
the control of the discretisation error that arises from the fact that the (unknown) exact
solution (p,u) € Q x V is approximated by a discrete solution (p,, u,) computed in a finite
dimensional vector space Q, x V,. The aim of a posteriori error control is the computation
and justification of lower and upper error bounds for the unknown discretisation error
e:=(p,u)—(ps,u,). Apart from the standard case that the discrete spaces are subspaces of
their infinite dimensional counterparts, we will also consider a violation of this inclusion
in the case of non-conforming methods.

This paper is organized as follows. After some basic notations and definitions in this
introductory section, a unifying formulation for different problem classes is introduced
and applied to various examples in Section 2. Section 3 about the basic concepts of resid-
ual type error estimation is followed by a brief introduction to finite element spaces and
interpolation operators in Section 4. The theoretical part is concluded by a compilation
of crucial theorems in error estimation with proofs. In addition to the above statements,
Sections 2 and 3 prepare applications discussed in detail in Sections 6 to 9.

Notation. In this paper, a < b abbreviates a < Cb with some multiplicative mesh-size
independent constant C > 0 which only depends on the domain 2 and the shape (but not
on the size) of finite element domains. Moreover, C is independent of crucial parameters
of the partial differential equation (PDE) such as the Lamé parameter A in the problem of
linear elasticity below. Furthermore, a ~ b abbreviatesa S b < a.

Colon denotes the Euclidean scalar product of two matrices A = (Aj),B = (Bj) €
R™" thatis, A: B := ZZk:lAjkBjk’ the dyadic product of some vectors a,b € R" is
denoted by a® b := ab” and the cross product of two vectors a, b € R® is written as a A b.
The space of symmetric matrices in R is defined by

R .= {fAcR™": A=AT}.

sym

There are different definitions of the differential operator curl which we use in the doc-
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Table 1: Overview of the different definitions of the curl differential operator.

V:QCR"—>R V:QCR'" > R"
- T lv=20,v,— @
n=2 Curlv = a3, curlv = 0, vy — 0y, V1
X1
3x2v—3x3v 8x2v3—8x3v2
n=3|Curlv=|0,v—0.v |, curlv=|0,vi—0v3 | =VAV.
Ox,V — Oy, V Ox, Vo — Oy, V1

ument. An overview is depicted in Table 1. Note that the curl of a function is always
orthogonal to the gradient.

The Sobolev spaces of functions defined on a domain 2 € R" required for the formula-
tion of the presented PDEs are as usual denoted by H*() for the space of all functions in
L?(92) which allow weak derivation up to order k and

H(div,Q) := {v e L2(;RY) | divv =V -v e L?(Q) } ,
H(curl,Q) := {v e L2(;R®) | curlv=V Av e LZ(Q;RS)}.

Moreover, the spaces of functions with boundary conditions are written as

L3():={qel* )| [ qdx =0},

HS(Q) = {v e HY() | v0sza =0},

Hy(div, Q) := {v € H(div, Q) |v-v|m:0},
Hy(curl, Q) := {v € H(curl, Q) | v AV)lsa ZO}.

where v is the unit exterior normal vector on the boundary 9 of Q.

Reliability and efficiency. The presented approach provides a general guideline in the
derivation of reliable and efficient error estimators commonly denoted by n or u. Any
computable quantity in a numerical method is called error estimator. For the error e, we
call an error estimator 7 efficient, if

1 < |le]| + hot.g,

and reliable, if
||€|| S n+ hOtrel .

Here “hot” denotes higher-order terms which usually are much smaller than 1) and the error
e, and which tend to zero with decreasing mesh size much faster. However, in general this
may depend on the (unknown) smoothness of the solution and the (known) smoothness
of the data.
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2. Well-posed continuous problems / unified notation of model problems

2.1. Generic mixed formulation

The problems in this text can be written in terms of linear algebra as follows. The sets
Q and V are real vector spaces with norms || - ||, and || - [|, and the operator .o/ maps
linearly from Q x V to its dual (Q x V)*. A linear operator .¢/ is continuous, if and only if
it is bounded. It is bijective if, for any £ € (Q x V)*, the equation .«/(p,u) = £ has a unique
solution (p, ). This defines an inverse mapping via ./ ~*¢ = (p, ii). The linear problem to
seek (p,u) € Q x V with .«/(p,u) = £ is called well-posed if it is uniquely solvable and if .o/
and the inverse mapping ./ ! are continuous.

In Section 3, we show in the context of error analysis by residual estimation, that
well-posedness of the problem is also essential for error estimation, although the unique
solution might not be known.

All applications considered can be formulated in a mixed setting. A unified representa-
tion is obtained in terms of the (bi)linear continuous forms

a:QxQ—-R,
c: VXV >R,
l:Q—R,
by: V>R

plus a differential operator A : V — Q. The space V always is a H!, H(div) or H(curl)
space, Q is usually an L? space and the bilinear form b is defined via

b:QxV —-R with b(q,v):=a(q,Av) forall(q,v)eQ xV.
With this, we define

& (p,u)(q,v) :=a(p,q) + b(p,v) — b(q,u) +c(w,v), (2.1a)
0(q,v) :=Lo(q) +Ly(v). (2.1b)
Then, the problem allows the following split: Seek (p,u) € Q X V such that

VgqeQ  a(p,q)—blq,u)=1Ly(q), (2.2a)
Yvev b(p,v)+c(u,v) =L,(v). (2.2b)

2.2. Poisson problem
For a function f € L?(Q), the Poisson problem reads: Seek u € Hé(ﬂ) with
—Au=f. (2.3)

The Poisson equation arises in a variety of physical phenomena with the density u of some
quantity in equilibrium, such as a chemical concentration, temperature or electrostatic
potential.
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In order to obtain error estimators of (2.3) with arbitrary data f, it is possible to exam-
ine the mixed formulation of the Poisson problem with two partial differential equations of
first order instead of one equation of second order, namely, seek a tuple (p,u) €Q X V :=
L*(9;R™) x Hy(€), such that

Vu=p and -—divp=7Ff.

For the Poisson model equation, the mappings a, b, ¢, A and the right-hand sides £, and
¢y from the definitions of the operator .« and the right-hand side ¢ in (2.1) read, for all
p,geEQandu,veV,

a(p,q) :=J p-qdx, b(q,u) ::J q-Vudx,
Q Q

c(u,v):=0, Au:=Vu,
lo(q) :=0, by(v) = f fvdx.
Q

Some function u € V solves the weak form of the mixed Poisson equation if and only if
!
VgeQ alp,q)—blqu)= f (p—Vu)-qdx =0=1{,(q),
Q

VveV b(p,v)ZJ

p-Vvdxz—J divpvdxéJ fvdx=4Ly,(v).
Q Q Q
Hence, problem (2.3) is recast as: Seek (p,u) € Q x V with .&/(p,u) = £, +{y.

Remark 2.1. The operator .« belonging to the Poisson problem is bounded, linear and
bijective: An inf-sup property can be shown immediately because for any (p,u) € Q X V,
with (q,v) := (p — Vu,2u) € Q X V and the H' seminorm on V = H(£), it holds
1/5[1(p, Wlloxv 11(g, VIllgxv
<1/5 (lipllq + llully ) (llpllg + 3lully)
<lplig +llull} = («(p,w)) (g, 7).

Thus, the (generalized) Lax-Milgram lemma yields bijectivity of .o/, cf. [12,14].

2.3. Stokes problem

Stationary incompressible fluid flow in a two- or three-dimensional domain can be
modeled by the non-symmetric Stokes equations

—Au+Vp=f in Q,
divu=20 in Q,
u=0 on 9Q
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for a velocity field u and a pressure p on a domain 2 € R" (n € {2,3}). The equations
are naturally stated in a mixed form with a vector valued solutionu € V := Hé(ﬂ; R™) and
with the pressure p € Q := Lg(ﬂ). In the symmetric formulation of the Stokes equations,
one uses the symmetric part of the gradient of a vector valued function u written as

1
e(u) := E(Vu +vul)erL? (Q;Rg};’f) .
The symmetric Stokes problem with viscosity parameter u > 0 reads: Find u and p with

—divue(u)+Vp=f in Q,
divu=0 in €,

u=20 on 99.

The two formulations are equivalent in case u = 1 assuming homogeneous boundary con-
ditions for the velocity on the entire boundary <, cf. [12,15].
The corresponding mappings read

a(p,q) = —J pq dx, b(gq,v):= —J qdivvdx,
Q Q
Csym(U, V) := J 2ue(u): e(v)dx,
Q
Casym(W, V) = J Vu:Vvdx, Au :=divu,
Q

lo(p,q) == —J pqdx, Ly (v) :=J f-vdx.
Q Q

Note that only for formal reasons £, is a bilinear form which depends on the solution p
as well as on the test function q. It cancels out in the mixed formulation with a(p,q).
In the variational form, the symmetric Stokes equation reads: Given f € L%(Q;R"), seek
(u,p) € V x Q such that

YVgeQ - b(q,u)zf qdivudxéo, (2.4a)
Q
VveV b(p,v)+cym(u,v)= f 2ue(u) : e(v)dx — f pdivv dx
Q Q
= J fvdx. (2.4b)
Q

The variational unsymmetric Stokes equations are identical with ¢, instead of cgyp,.

Remark 2.2. The Stokes equations (2.4) exhibit a unique solution (p,u), cf. [12,14,18,23].
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2.4. Lamé problem

In linear elasticity theory, the displacement u and the symmetric stress tensor o of a
body Q under the influence of applied forces f satisfy the Navier-Lamé equations. The
linear stress-strain relation C : R™" — R™*" reads

CE:=Atr(E)1 +2uE for strain matrices E € R™"
with Lamé parameters A, u > 0. The inverse relation reads

Clo=1/2u)o +A/(u(nA+2u)) tr(c)1 for stress matrices o € R™*™,

In the continuous model with the stress-strain relation o = Ce(u), the resulting model
problem reads: Given f € L2(;R"), find u € Hé(Q; R") such that

f+divCe(u)=0 in Q. (2.5)

To employ the unified theory for residuals with respect to discrete approximations of
the solution, let V := Hé(Q;R”), Q:=L%*(;R™™") and set, for o, T €Q and foru, v € V,

sym

a(o,7):= J (Clo): tdx, b(t,u):= J T:e(u)dx,
Q Q

c(u,v):=0, A(u) :=Ce(u),

Ly(v) = f f-vdx, lo(7):=0.
Q
A pair of functions o € Q and u € V solves the mixed formulation of the Lamé problem if

Vteq a(o,7t)— b(T,u)ZJ (Clo—ew): deéo,
Q

Vvev b(a,v)zJ

Q

Uzs(v)dxz—J

diva-vdxéJ fvdx=Ly(v).

Q Q

Remark 2.3. The elliptic PDE (2.5) has a unique solution u, see [27]. The operator .« :
(QxV)—(Qx V)" from (2.1) is linear, bounded and bijective, and the operator norms of
o/ and .o/ "1 are A-independent, cf. [13].

Remark 2.4. The method which is used to solve the problem depends on the representa-
tion of the problem. In Section 8, some mixed methods vary the spaces Q and V, and the
mappings .« and {.
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2.5. Eddy current problem
We consider the semi-discrete eddy current equations [36]

curly teurlu+ou=f in Q, (2.6a)
uAv=0 on 91 (2.6b)

in a bounded domain © C R3® with data f € L2(Q;R®) and parameters u, o > 0. The
variational form of (2.6) reads: Seek u € Hy(curl, Q) such that

J (,u_l curlu - curlv +ou - v) dx = J fvdx for all v € Hy(curl, Q).
Q Q

The mixed formulation of (2.6) reads

up —curlu=0 in Q,
curlp+ou=f inQ.

In accordance with our unified notation from Section 2.1 we set V := Hy(curl,Q2),
Q:=L%(;R*) and, forall p,g€Qand u,v €V,

a(p,q) := J up-qdx, b(q,u) := J curlu-qdx, (2.7a)
Q Q
c(u,v):= f ocu-vdx, Aw) :=p teurly, (2.7b)
Q
lo(q) :=0, Ly (v) ::f f-vdx. (2.70)
Q

The associated mixed formulation reads: Seek (p,u) € Q X V such that
|
Vq €Qa(p,q)—b(q,u)= J (up —curlu)-qdx =0,
Q

Vv eVb(p,v)+c(u,v)= J

curlv-p—i—au-vdxéJ f-vdx.
Q Q

Remark 2.5. The operator .« : (QxV) — (QxV)* defined by (2.1) and (2.7) is continuous,
linear and bijective, and thus allows a bounded inverse, cf. [22].

3. Errors and residuals

3.1. Concept

For the exact solution (p,u) € Q x V of a well-posed problem (2.2) and some approxi-
mation (py,uy) € Qp X V,, the error e is defined as

e:=(p,u) = (pe,up) =(p — pg,u—uy). (3.1)
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Note that both, (p,u) and (p,,u,) map from Q to some R-vector-space. Thus, e is well
defined even if the approximation p, or u, does not belong to the space Q or V, respectively.
In general, it is of course not possible to calculate the exact error e, since the exact solution
(p,u) would read
(p,u) = e+ (pg,uy).

For non-conforming discretisations, since (p,,u,) does not need to belong to Q x V, the
error norm |le||oxy may not be well-defined and hence can not be estimated properly. The
split (p,u) is always done in such a way that Q, C Q. However, it might be that V, Z V. In
order to allow for an estimation of the error, u, thus may have to be further approximated
by some i, € V. We will discuss the strategy to find an appropriate i, in Section 5.1 by
means of the central Theorem 5.1.

For a solution (p,u) and an approximation (p,, ;) € Q x V, the residual #Zes measures
the image of (p — py,u —1iy) under .«¢,

Res 1= Vd(p _pf5u_ﬁ€) = Vd(pﬂl) - Vd(pbﬁﬁ) € (Q X V)* (32)

With practical calculations in mind, one aims at an estimation of the residual (in its op-
erator norm) by some a posteriori error estimators which are reliable and efficient. The
continuity and boundedness of .« is inherited to Zes and therefore, the error (p—p,, u—ii,)
is equivalent to the residual,

1Zesllioxvy ~ I(p — pe,u — Tp)llgxv-
Recall that (p,u) solves .o/ (p,u) = £, +{y. The identity (2.1) for .</ allows us to write the
residual Zes in terms of a, b, c, £, and £y as
Res(q,v) =Lo(q) +Ly(v) —a(pe,q) — b(py, v) + b(q, ty) — c(iy, v).

This is the sum of the partial residuals Zes, € Q" and Zesy € V*, namely

%esQ = EQ - a(pf) ) + b() ae) = ZQ - a(pﬁ - Aae, ) € Q*; (333)

Resy =Ly — b(py,-) —c(iy,-) V™. (3.3b)
The well-posedness and boundedness of ./ implies

lp = pellq + llu —dglly ~ [|Zesqllg + | Zesy v+
In case £, = 0 and if Q is a Hilbert space with scalar product a(-, ), the fact that Zes, € Q*
implies
||<%63Q||Q* =|lp, — Aa€||Q~
In Sections 6-9, error estimators for the different problems defined above will be de-

rived. For this, a consistency residual Zes ., and an equilibrium residual Zes,, are de-
fined and analysed in each case. Usually these coincide with the residuals Zesy and Zes

with a few terms swapped to either of the residuals Zes s or Zes.q Whenever it seems
more natural (cf. Sections 3.3-3.6 below).

Remark 3.1. This paper does neither aim at a convergence analysis nor at quasi-optimality
of adaptive FEM. We note that these issues have been initiated in [31] and subsequently
studied in [10,42] and [26].
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3.2. Hilbert space case

The following Theorem 3.1 gives a characterisation for .& being a scalar product on
# = Q x V. This is the condition for the result in Theorem 3.2 where we derive a pertur-
bation result which is illustrative to consider although it is limited to certain applications
only. In their mixed formulation, all applications in this paper have b # 0, which means,
with the first part of Theorem 3.1 in mind, that Theorem 3.2 cannot be applied. However,
since condition b(Au,v) = b(Av,u) in the second part of Theorem 3.1 is always satisfied,
Theorem 3.2 can be applied in all conforming non-mixed finite element methods in this

paper.
Theorem 3.1.

1. A bilinear form . : (Q X V) X (Q X V) — R defined as in (2.1) with bilinear forms a,
b and c is symmetric if and only if the mappings a and c¢ are symmetric and if it holds
b=0.

2. A bilinear form B : V X V — R defined by %(u,v) = .« (Au,u)(Av,v) with bilinear
forms a, b and c is symmetric if and only if a and ¢ are symmetric and if for allu,v € V
it holds b(Au,v) = b(Av,u).

Proof. If ./ is symmetric, then for p =q =0 <€ Q and for all u,v € V it holds
c(u,v) = A (p,u)(q,v) = o (q,v)(p,u) = c(v,u),

which means c is symmetric. Furthermore, for all p,g € Q and u =v =0 V it holds

a(p,q) = o (p,u)(q,v) = /(q,v)(p,u) = a(q,p).

Thus, a is symmetric. Using the fact that ./, a, b and c are bilinear, one easily realizes that
for all (p,u),(q,v) €Q x V it holds

a(p,q) + b(p,v) — b(q,u) + c(u,v) = alq,p) + b(q,u) — b(p,v) +c(v,u).
Subtracting a(p,q) = a(q, p) and c(u,v) = c(v,u) yields

b(p,v) = b(q,u).

To prove part 1 of the theorem, set for example g = 0 to show for all (p,v) € Q x V that
b(p,v) = 0 which implies b = 0. To prove part 2, assume u,v € V and set p = Au and
q = Av to see b(Av,u) = b(Au,v). The implications in the other directions are obvious. [J

Given a right-hand side ¢ € 5* and its Riesz representation u, i.e., .o/u = £ in 2,
suppose that u, is an approximation for u. Define the error e and the residual Zes as
in (3.1)-(3.2) by

e=u—u, and ZRes=.(e)=L{— Ju,.
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Theorem 3.2 (Error Approximation/Characterisation). Let .o/ be the scalar-product in the
Hilbert space 3¢ and define Res = ./ (e,-) = .o/ (e) for any e € . Then, for all v € 7 with
IVl = 1, it holds

llell e — Zes(v) _ 1 2

e
—_— V—
llell 2 H llell

Proof. Some elementary algebraic calculations yield

H

llell e — Zes(v)

llell

1 (L> )
el
o (—e ) (—e ) _ o (—e )(v)+ Lo
lele ) Ulell el 2

2
e
llell.

1

S 2
1

= O
2

o
Theorem 3.2 concerns the task to obtain a good approximation of ||e|| ,» by the resid-
ual Zes(v) for some test function v. It reveals that the function v needs to be close to
e/llell ». Hence, the evaluation of the operator norm ||Zes||,.+ is, in general, equivalent
in terms of complexity to the evaluation of the exact solution u. Consequently, alternative
approaches for the calculation of upper and lower bounds for ||Zes|| 5+ are required and

it appears advisable to compute good upper and lower bounds instead of the exact norm
of the residual.

3.3. Poisson problem

With the definitions of Section 2.2, the residuals of the Poisson problem (2.3) result
from the residual representation formula (3.3). For q € Q, the residual Zes;, depends on
the choice of iy,

Resq(q) =Lo(q) —alpy — Ally,q) = J (Viig —pg)-qdx. (3.4)
Q

Since L2(2) is isometrically isomorphic to its dual L2(£2)*, this yields the equality

||92€5Q||Q* =|lpe — Vﬁf”Q-

The minimisation with respect to ii, leads to the consistency part of the residual as dis-
cussed in Section 5.1 below.

For v € V, the equilibrium residual for the Poisson problem Zes,, can be written as

Resy(v) =Ly (v) —b(py,v) —c(iiy,v) = f fvdx— J Vv -ppdx.
Q Q
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For some general subset Q, C L2(Q;R"), the divergence divp, is merely understood as
some distribution in H~!(Q). An integration by parts shows that f + divp, is the Riesz-
representative of Zes, which we write as

|Zesy |l = IIf +divpllg-—1q)-

3.4. Stokes problem

With an approximation (py,i,) of the exact solution (p,u) of the Stokes equations
(2.4), the calculation

Resq(q) =Lo(p,q) — alp, — Ally,q) = —J qdivi dx
Q

yields the following part of the consistency residual,
[ Zesqllgr = Il divii[| 2q)-
For the residual Zesy of the symmetric equations, it holds
Resy(v) =Ly (v) = b(pg, V) — coym(fig, v)

:f f-vdx—f 2,u£(ﬁe):£(v)dx+f pedivy dx
Q Q

Q

= J f-vdx— J (2ue(iy) — pel) : e(v) dx.
Q Q
Notice that the symmetry of the discrete stress tensor

oy :=2ue(ly) — pl

allows o, : €(v) = o, : Vv. This suggests a split of the last term

J ue(iy) —pl) i e(v)dx = f 2w (e(iy) — &o(uy)) : e(v) dx —l—f oy :Vvdx
Q Q

Q

and yields

1Zesy (V) ~2ulle (ue) — e(@o)ll2qmmm)le(Wll L2g;mmer)

Jf-vdx+J oy :Vvdx
Q Q

The first term ||le,(u,) — €(@,)l;2(q;rr) may be treated with the methods for consistency
error estimators in Section 5.1. The remaining two terms are treated as the equilibrium
residual according to Section 5.2. The non-symmetric case can be analysed in an analogous
way.

+
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3.5. Lamé problem

An approximation (o, 1, ) of the true solution (o, u) of the Lamé equations (2.5) leads
to

Resq(t) =Lo(7) —aloy — Aty,7) = J (s(ﬁe) — C_lag) :Tdx. (3.5)
Q
Hence, the dual norm of the consistency residual reads

~ -1
Iesqllg: = lle(i) = ol xgaumm.

For any v € V, the resulting equilibrium residual in V* is given by

Resy(v) =Ly (v)—Db(oy,v)—c(i,,v) = J

Q

f-vdx —J e(v):o,dx. (3.6)
Q

Note that for all symmetric matrices E,F € R;"yﬁ it holds
CE:F=(Atr(E)1+2uE): F=Atr(E)1:F+2uE:F=Atr(E)trF+2uE=CF :E.

Hence, the differential operator A is symmetric in the form b for the non-mixed formulation
(cf. Theorem 3.1.2) with

b(Au,v) = J Ce(u):e(v)dx = J Ce(v):e(u)dx = b(Av,u).
Q Q

3.6. Eddy current problem

With an approximation (py,i,) of the exact solution (p,u) of the eddy current equa-
tions (2.6), for all ¢ € Q the residual Zes, reads

Resq(q) =Lqo(q) — alpy — Adly,q) =J (curldy — upy) - q dx. (3.7)
Q

For the dual norm of this consistency residual one obtains

| Zesqllor = llupe — curldy |l 2(q;rm)-

The other part Zesy reads forallv eV,

Resy(v) =1Ly (v)— b(pg,v) — c(iiy,v) :J (f —otiy) v dx—J pe-curlvdx. (3.8)
Q Q

The involved analysis of this equilibrium type residual Zes,, will be studied in Section 9
below.
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4. Finite element spaces

This section is devoted to the most common finite element spaces. After some pre-
liminary notation in Section 4.1, they are introduced in Section 4.2. The subsequent Sec-
tion 4.3 defines (quasi-)interpolation operators mapping from V X Q to V, X Q, in a generic
way for a wide range of applications. Moreover, lifting operators needed in the analysis
of discontinuous Galerkin (dG) methods are introduced. The section is completed by a
formal reformulation of the conforming, non-conforming and mixed discrete problems in
the unified notation (Section 4.4).

4.1. Notation

The construction of finite element spaces is based on the discretisation of a Lipschitz
domain Q2 Cc R" (n = 2, 3) which is a bounded, simply connected set with piecewise affine
boundary 3. Let J, be a set of simplices in €2, i.e. in 2D, a set of closed triangles T C Q of
positive area | T | respectively in 3D, a set of closed tetrahedrons T C Q with positive volume
IT|. The set J; is called triangulation of Q if | JF; = Q and if for simplices Ty, T, € F,, it
holds T; = T, or the intersection of T; and T, has zero volume, that is, |T; N T,| = O.
We denote the set of all nodes of simplices in &, with .4}, the set of inner nodes with
Ay = N NQ, the set of all edges with & and in the 3D case the set of faces of tetrahedrons
in J; with Z,. Furthermore, for v C Q and p € Q we abbreviate

M(w) =M Now;

Hy(w) == Nw;

&(w)={Ecé ‘ Ecol;

Fy(w) = {F €7, ’ Fc w};

()= {Teg|wct} and 2()=2pD

and write mid(w) for the center of gravity for elements, faces or edges w.
A triangulation 7, is called regular if it holds

TZ'NTy, e FHUEUZF, UANU{D} for simplices T; and T, € 7.

For a triangle (tetrahedron) T € &, with area (volume) |T| we define its size hy := |T|M" &
diam(T). All triangulations in this paper are shape-regular in the sense that the volume
|T| is equivalent to the diameter hy of each simplex T. The piecewise constant mapping
hy : Q — R is defined in an L? sense via hy|; := hy for all T € ;. Accordingly, for
any edge E € & (or face F € F,), we denote its size by hy := |E| (or hp := |F|"/?) while
vg (or, in 3D vy) and 75 are the unit normal and unit tangential vectors. The mapping
he : | J& — R is defined by hg|g := hy for all E € &,.
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Additionally, for z € A;, E€ &), F € &;, and T € J;, we refer to Q,, Qg, Qp, and Qy
as the patches

2=k, =2,
Q= JaF), Q= J{T"ez | T'nT #0}.

In some cases it is convenient to keep the notation independent of the space dimension by
definition of the set

@ & forn=2, 4.1)
e Z, forn=3. '

Besides, we sometimes write “edges/faces” if we want to use edges in the 2D case and
faces in 3D. We define the jump of a function v on C € 6, by

[vlc:= V|Tl - V|T2

with Ty, T, € (C), C = T; N T,. The extension to all edges/faces [v]¢4 : [ 6, — R™
is given for all C € 6, by [v]¢|c = [v]¢c. By {v}y, we denote the mean value of test
function v in case of jumps at inner edges/faces and elsewhere the value of v. Jumps and
mean values are defined analogously for vector and matrix valued functions. Details can
be found in the dG literature such as [4, 25, 34].

4.2. Discrete spaces and basis functions

Problems considered in this paper employ the spaces H!(Q; R™), H(curl, Q), H(div, ),
and L2(£;R™). With appropriate differential operators, these spaces form an exact se-
quence [5,6] which is shown in the next commuting diagram together with corresponding
conforming discrete spaces. The respective quasi-interpolation operators J,',J;,J;,J; are
defined in Section 4.3, the discrete spaces in the bottom line are defined below.

HY(Q;R™ % H(cur,Q) 9 H(div,Q) 4% L2(Q;R™)
Ly LJE LJf L/ (4.2)
Pi(Z;R™) % Ndi(Z) b RTo(%) 4% Po(F;R™)

Conforming Discrete Spaces. P,(w;R™) denotes the space of polynomials of total degree
< k which map from w C R" to R™. For a triangulation J, of Q,

P(T3;R™) = {v € L2(Q;R™) | VT € 7, vl € P(T;R™)}

denotes the space of piecewise polynomials of total degree < k. Some common affine
conforming discrete spaces are the Courant spaces (P;), Nédélec’s first family of elements
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(Nd;) and Raviart-Thomas spaces (RTg), as shown in (4.2).
P{ o(Z;R™) := P (F; R™) N Hy (2; R™),

Nd,(T):= {v T ->R3

Ja,beR3, VxeT, v(x)za—l—b/\x},

Nd,(Z) := {v € H(curl, Q; R®)

VT E%, V|T ENdl(T)})

Ndy o(%)) := {v € H(curl, 2: R?)

VT € 75, vly €Ndy(T), (v AV)|ag = 0},

RTy(T) := {p :T—>R"

JdJaeR", beR, VxeT, p(x)=a+bx,},

RTo(%) := {p € H(div, Q; R™)

VT %, plT S RTo(T)} .

For the spaces defined above, we denote by {¢, | z € 4}, {9 | E € &}, {¢r | F € Z},
and {¢ | T € 7;} the nodal basis of P{(7,), the edge basis of Nd, (), the face basis of
RT((Z,;), and the element basis of Py(7,), respectively. The basis functions are chosen to be
orthonormal with regard to the canonical degrees of freedom, i.e., for z;,z, € A}, Ej, Ex €
&, Fi,Fe Fyand T}, Ty € T,

‘sz(zk) =01, J ¢, ds =0, J ¢p, do=0j and J @, dx = 0.
E; F; T

For convenience, we recall the construction of the common P; -basis in more detail. The
nodal basis functions , are defined for each node z € 4, in two steps. First, the values at
the nodes are given by

p,(2)=1 and ¢,(x)=0 for any other node x € A} \ {z}.

Then, given ¢, on A}, ¢, is defined on each triangle T = conv{A, B, C} via affine inter-
polation. More precisely, x € T can be represented by x = aA+ BB + yC with convex
coefficients 0 < a, 8,y < 1 where a + 3 + y = 1. The evaluation of ¢, at x is obtained by

(x) = ap,(A)+ By, (B)+ e, (C).

Since the triangulation is regular in the sense of Ciarlet [28], this defines a globally contin-
uous and piecewise affine function ¢, € H'(Q). Figs. 1 and 2 show the degrees of freedom
and a P; basis function.

The construction of Nédélec basis functions is explained in Figs. 3 and 4, Raviart-
Thomas basis functions and the use of degrees of freedom are shown in Figs. 5 and 6.

Non-Conforming Discrete Spaces. We will use the common non-conforming discrete
Crouzeix-Raviart spaces on Q C R? defined by

CRy (T R™) = {v € Py (75 R™)

y continuous in mid(é})},

CR1 (75 R™) = {v € Py(7;R™)

v continuous in mid(é&;),

VE € & with E € 9, v(mid(E)) = o}.
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Figure 1: The P; functions in R? and R® have three resp. four degrees of feedom. The values of the
function can be chosen for each node of the simplex - the resulting functions are H'-conforming.

(PZ(Z) =1

N/ |/

Figure 2: P, basis function ¢, in R? belonging to node z. The function is continuous and therefore
H'-conforming.

Figure 3: The Nédélec functions in R? and R® of the form v(x;,x,) = (a; — bx,,a, + bx;) and v(x) =
a+bAx, respectively, have three resp. six degrees of feedom. For each edge, the tangential component
can be chosen - the resulting functions are H(curl)-conforming.

According to this, basis functions for CR;(Z;; R) are defined for edges E of a triangle by
Yp e Pi(F) st Yp(mid(F))=06pr forE,F €é,.

Fig. 7 shows the use of the degrees of freedom and an example of a Crouzeix-Raviart
basis function in 2D.

Modified Basis Functions and Oscillations. Assume that each triangle T € J, has at least
one node in ¢, C Q and install a mapping ¢ : A; — & such that {| 4, =id|, and, for all
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Figure 4: Nédélec basis function ¢y in R? belonging to the edge E. The tangential jumps over all edges
are zero and ¢y is therefore H(curl)-conforming.

Figure 5: The Raviart-Thomas functions in R? and R® of the form v(x;,x,) = (a; + bx;,a,+ bx,), have
three resp. four degrees of feedom. For each face, the normal component can be chosen - the resulting
functions are H(div)-conforming.

Figure 6: Raviart-Thomas basis function ¢, in R? belonging to the edge E. The normal jumps over all
edges are zero and ¢; is therefore H(div)-conforming.

z e M\ A, {(2) e #(T(z)) is a neighboring free node. As ¢ might not be injective, the
inverse mapping { ! is set valued, {71 (2) := {y € A, : {(y) = 2}.

Recall that (¢, ), 4, denotes the nodal basis of P;(Z)NC (). Then, for z € #;, define
functions v, via

Y= Y. ¢y €P(T)NC(R)

ye((2)

and the corresponding support sets supp v, := {x € Q : ¢,(x) > 0}.
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Yp(mid(E)) = 1

PO A\ NZAN
NS N\

7o

Figure 7: The CR,; functions in R? have three degrees of feedom. The values of the function can be
chosen for the midpoints of the edges/faces (left). The figure on the right shows the CR; basis function
¢y belonging to edge E (grey). The function is continuous in the midpoints of all edges.

Lemma 4.1.

1. The family (¢, : 2 € ;) is a Lipschitz-continuous partition of unity on €2,

Z¢z=1a.e. inQ, and forallz € #;, 0=< ¢, <y, <1.
2EX,

2. From 1, # @, it follows &(Fy(2)) N &(9N) # 0 in 2D, i.e. at least one triangle with
vertex z has at least one edge on the boundary 92 of the domain Q. The equivalent
statement in 3D is F,(F;(2)) N F(9Q) # 0.

3. The supports supp ), have finite overlap, i.e.

max Z2E€ M, x €su <1.
xeQfeN { t PPY:}| S

Proof. Details of the proof are left to the reader, cf. [16,17]. O

The following definition of oscillations and the Definition 4.1 below of the interpolation
operator J, employ this partition of unity and allow the formulation of Theorem 5.2 which
gives a posteriori estimators for equilibrium type residuals.

With the abbreviation g, := |w|™? fw g(x) dx € R™ for the integral mean of a function

g € L?>(w;R™) and any set . of measurable subsets w of £ of diameter Y, := diam(w),
the oscillation of g on & is defined by

1/2
osc(g, ) = (Z 2 llg — gwllfz(w)) : 4.9

weS

The data oscillation osc(g, J;) plays an important role. Additionally, we define oscillations
subject to the set of free nodes #; by

Osc(g, #;) :=osc (g, {suppy, : z € A, }).

One can easily derive that osc(g, 7;) < Osc(g, #;).



528 C. Carstensen, M. Eigel, R. H. W. Hoppe and C. Lobhard

4.3. Interpolation and lifting operators

Quasi-interpolation operators for the sequence of spaces satisfying the commuting dia-
gram property as depicted in (4.2) have been constructed in [40] in the sense that

VI =J/V,  culJf =Jfcur, divJ] =J/div. (4.5)

The quasi-interpolation operators are defined as the compositions of the classical interpo-
lation operators associated with the respective function spaces and appropriate smoothing
operators. We emphasize that the incorporation of smoothing operators is mandatory, since
the classical interpolation operators require continuous functions and, e.g., H'(2) S C(Q)
for an open domain Q.

We recall that, for sufficiently smooth functions, the classical interpolation operators

1 :HY(Q) - Py (Q;R™), I} : H(curl, Q) — Nd; (7)),
I, :H(div,Q) = RTo(7), I} : L*(Q) = Po(F)

are given by

Ié\’v = Z v(2)p,, (4.6a)
2EN
va = Z fv-rEds PE, (4.6b)
Eeé”g
(0
va = Z v-vpdo | ¢p, (4.60)
FeZ, K‘PJ'
I,ZTV = Z (vdx or. (4.6d)
TET, K%

For x € Q and T € J; we refer to (AZT(X))Ze () s the barycentric coordinates of x

in T, such that x admits the representation x = >, _ Hi(T) AZT(X)Z where all coordinates

AZT > 0 are non-negative and sum up to one, i.e. Zze (T 7LZT = 1. For every node z € A},
we choose w, C €, as a simply-connected domain with z € w,, e.g., w, := B.(z) N Q,
for some appropriately chosen r > 0, where B,(z) stands for the ball with radius r and
center z.

For a triangle or tetrahedron T € 9, x € Q, y, € w,, 2 € A(T) and T’ := conv{y, :
z € N;(T)}, we consider the transformation

206 o) = DL ALY, 4.7)
zeM(T)
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=

Figure 8: lllustration of the mapping % defined in equation (4.7). It maps a point x in a triangle T
(printed bold) with nodes z; and fixed points y,, in regions w, (grey shaded) around the triangle's nodes
to a point % in the triangle T’ =conv{y, : z € A;(T)} (dotted).

see also Fig. 8, and define the smoothing operators Sé\’ on H(Q), Sf on H(curl, ), Slf on
H(div,Q), and S/ on L*(Q2) by means of

-1

(S/v)(x):= ]_[ o, | J v(2) d(Yz)zen; (s (4.8a)
z€H(T) [ Lesyir@:
-1
dx\T
(SEEV)(X):: l_[ |wz| ( d_) V(X)d(yz)ze(/ﬂ(T); (4.8b)
ZEL/V(T) anéﬂ T) @z X
(4 7(T)
-1
F [ dx\ 7" dx
S = [ lel — | v(®det| = | d()ecyr) 480
J dx dx
2N (T) l_[zw(r) W,

-1

.
[ lel J

2€M(T) nzedx/[(T) Wy

(ng)(x) :

dx
V(.)AC) det (i) d(.yz)ze(/ﬂ(T)' (4.8d)

In terms of the classical interpolation operators (4.6a)-(4.6d) and the smoothing op-
erators (4.8a)-(4.8d), the quasi-interpolation operators are given by

JY =1 oS}, Jf:=IfoS], (4.9a)
Jj =1 oS/, J:=1I/0S/. (4.9b)

The commuting property (4.5) of diagram (4.2) follows from the corresponding prop-
erties of the classical interpolation operators and the smoothing operators (cf. Lemma 3
and Corollary 4 in [40]). The quasi-interpolation operator J év shares the H!-stability and
local approximation properties of Clément’s quasi-interpolation operator [17,29]. The
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same applies to J f compared to the quasi-interpolation operator from [44]. As far as J f is
concerned, we have the following result.

Theorem 4.1. Let JeE : Hy(curl, Q) — Nd, ((7;) be the quasi-interpolation operator given by
(4.9a). Then, for every v € Hy(curl, Q) there exist ¢ € Hé(ﬂ) and z € HS(Q)3 such that

Vv — JeEv = Vo + z,
R el + 190y S IVl Teg,,
W lellzery + Vsl S leulvllegy, T,

where the element patch Qy is given by Qp = UHT e | T' nQy #0}

Proof. We refer to the proof of Theorem 1 in [40]. O

Remark 4.1. A Scott-Zhang-type interpolation operator Jf : Ho(curl, Q)nH'(Q)* — Nd,
(Z,) that admits similar local approximation properties as in Theorem 4.1 has been derived
in [9]. This result has been recently improved in [45] without requiring extra regularity.

For the proof of the reliability of the equilibrium estimator in Section 5.2 we make use
of the following interpolation operator from [17].

Definition 4.1 (Weighted Interpolation Operator J;). Given g € L?(Q) set J,g € Py ()

by
Jﬁg = Z (J ngdx/f (,OZdX) 24 (410)
ZEX, Q Q

to define an operator J; : L>(Q) — Py o(T0).
In addition, the operator J, fulfills some quasi-orthogonality and H!-stability, see [17].

Theorem 4.2. For all f € L?(Q) and g € H'(Q), the interpolation operator of (4.10) and
the set of free nodes &, of a triangulation J; of domain Q it holds

J f(g—Jig)dx S Osc(f, )NV gl (4.11)
Q

Proof. For a free node z € %, set

&z ::J qugdx/J pzdx  and fsuppwz ::|supp¢z|_1J fdx
Q Q

suppy;
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Since fﬂ(l,bzg — g,p,)dx =0 and Zze% v, = 1, the Cauchy inequality yields

f flg=Jig)dx= Y f f (%28 — g:¢p5) dx
Q Q

ZEX

= Z J (f _fsuppz/)z) (wzg _gz(’OZ) dx
Supp ),

2EA,

1/2
< Osc(f, #;) (Z diam(suppp,) 2.8 — gztpzllﬁz(supp%)) :

2EA)
For every inner node z € suppt, the term diam(supp),) ||y, g — 829zl 12 (suppp,) 18
bounded by [|Vgl|2(suppy,) and so (4.11) follows with Lemma 4.1. O

In the context of discontinuous Galerkin discretisations, integrals on the intersections
of elements are crucial to penalise non-conformity. Appropriate lifting operators [4, 25]
enable the error control on edges and faces. On C € 6, and for some k € N with the jump
and the function average defined as in Section 4.1, the lifting operators r. : L2(C; R™*") —
P (F;; R™™) and s : L2(C; R™) — Pp(F;; R™ ™) read

J re(q):rpdx = J q:{r/}ds for all ry € P (F; R™™),
Q c

J sc(v):irpdx :J v-[r]ds for all r, € P(Z;; R™ ™).
Q c

Let 6, g be the interior edges or faces of 6. The global lifting operators r : L2(6,; R™*M)
— Ly and s : L*(6,.q) — Pu(7; R™") are given by

ri= Z re and s:= Z Sg. (4.12)

Ce%, Ce(gg’ﬂ

Note that the definition of the lifting operators for vector-valued functions is identical.

4.4. Discrete problems

Given the continuous problems .o/ (p,u) = {4 + £y of (2.3), (2.5) and (2.6) with dif-
ferential operator A and a regular triangulation &, of the domain £, the generic discrete
problem reads: Find (py,u;) € Q; X V; such that

V(qi,vi) €Qe xVy (P, ue)(qe, ve) = Lo(qe) + Ly (vy).

The modified discrete operator .«/, depends on the class of the finite element method. In
conforming methods, one uses .«, = .« and p, = Au, and therefore one solves

dy(Aug,up) = a(Aug, A) +cug,-) = Lo +Ly.
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In non-conforming methods, although the differential operator A and the bilinear form a
is not defined on V,, it induces some J,-piecewise operator

AV —Q, via Apvlr = Alrvely forall T € ;.

In the same way; it is assumed that c is extended to V + V, without being relabelled. With
this operator A,, set p, = A;u, and solve

ﬂfe(/\fﬂe,ﬂg) = a(AEUZ,Ag‘) +C(u€,') = KQ +€V

Mixed methods are formulated explicitly to provide a tuple (p,,u,). In conforming mixed
problems, one solves

@y (pe,ug) = alpy, ) +alpe, A) —ale, Aug) +c(uy,-) = Lo + Ly .

In mixed non-conforming methods, A is replaced by the piecewise analogue A, which
yields the formulation

dy(pe,up) = alpy,-) +alpe, Ag-) —al-, Agug) +c(uy, ) =Ly + Ly .

Note that the natural formulation of the Stokes problem (2.4) is the mixed form. More-
over, for dG methods, additional flux functions F, and Fy specific to the dG method enter
the discretisation which are evaluated with respect to u, and p,, see [25]. The general dG
formulation reads

quf(pfﬂ'Q) :a(pb ) + Cl(pe,Ae‘) + (FQuf5 )Q - Cl(', Aﬁuf) + C(ub ) + (vaf, ')V

5. Abstract dual norm estimates

This section is devoted to estimators for the consistency and equilibrium errors. The
results are general and can be applied to many applications and discretisation schemes
discussed in this review as will be shown in subsequent sections.

5.1. Consistency error estimates

For a regular triangulation J; of Q C R? and functions u, € V; and p, = V,u; € Q; with
the piecewise gradient V,, our analysis of the consistency error is based on the minimum

min J{||p,z =V lv e V}.

In many situations, the following theorem provides several equivalent computable a pos-
teriori error estimators.
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Theorem 5.1. On some domain Q C R, for a Crougeix-Raviart function u, € CR; o(F) and
with V = Hy(Q) and Q = L*(2) it holds

min||V,u, — V < min ||V,u,—V 5.1a

min IV ey, V||L2(g)_vze 1)10(%)” e — Vvl (5.1a)
< min |[|hZ'(u, —v 5.1b
< in lhg (ue — vo)ll2q) (5.1b)
< |Ih5" (ue — Agup)ll 26y (5.10)
< |\nzY2 1y 5.1d
N‘ s uelg, 28 (5.1d)
< ||nY? [V, - 5.1
S|he " [Vew - Tels, 2Us) (5.1e)
< min||V -V . 5.1
< min IV ouy Vi) (5.1f)

The averaging operator Ag, : CR;(J;) — P;(7;) employed in the theorem is defined by
Agu(z) := Z u|lr(2)/17(2)] for all z € ;.
TeZ(z)
The following lemma is needed in the proof of Theorem 5.1.

Lemma 5.1. For any finite index set J of length |J| € N and a family (a; | j € J) of real
numbers with mean value a := Y, jes @ ;i/|J1, it follows that

2 2
Z (aj—ap )" ~ Z(a]- —a)’.
j.keJ jeJ

Proof. The calculation

USYCEDEDY (ulaj —Zw)z =, (Z(aj —au)z

jel jel keJ jes \keJ

<WPYD (a;— ap)?

jeJ keJ

shows the inequality “<”. To prove the converse inequality, for j, k € J one observes that
2
(aj - a;)? = ((aj —a)—(ax — a)) <2(a;— a)? +2(a; — a)?.

The sum over all tuples (j, k) € J? yields
Z:(aj—ak)2 S2|J|22(aj—a)2. O

j.keJ jeJ

Proof of Theorem 5.1. The first estimate (5.1a) holds due to the inclusion P; o(F;) C V,
while inverse inequalities on every element domain T € &, yield (5.1b). To prove (5.1c),
define v, € P ((7;) as J;-affine interpolation of the mean values

V(@) =Azu ()= Y ule(@)/17()

TeZ(2)
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ug(x)

uglr

Uglr,

a X
mid&
[uelg

Figure 9: lllustration of the geometry and notation in the proof of (5.1d) of Theorem 5.1. To calculate
the L?-norm of the jump of the CR;-function u, along the edge E =T, NT_, merely u|;, and u|; are
evaluated in z.

[

at inner nodes z € #}. (5.1c) follows from A u, € P;(7). Note that v, = ZZE% vi(2)p, €
V vanishes on the boundary. On each domain T € J,, V,|; = V|; and the argument in
the L?-norm is piecewise constant

— _ 2
P2l = velZapy % 1T D [uele (@) = vl )]
z€H(T)

Notice |T |h;2 ~ 1. The sum over all triangles/tetrahedrons and a change of summation
order yields

5! (e = vl S D D Juelr() = velr ()|

2€M TEF(2)
For any z € 4}, Lemma 5.1 leads to

D7 fuele@ —vilr @~ D uele @ —uels@)|.

TeZ)(2) T,S€7;(z)

Recall that u, is piecewise affine and continuous in the midpoints mid(E) of edges E €
&;(z). On the common edge E of two adjacent triangles T, ,T_ € Z(2), E =T, N T_, the
L?(E) norm of the jump [u,]5 as shown in Fig. 9 can therefore be calculated by

e 2ulr, () — el (2)) g
”[“f]ge“%Z(E) :J ( L ZhE AL . (ulr, () —ueIT(z))) ds
0

2
~ hg|uglr, (2) — uglr (2)| .

The combination of the aforementioned estimates results in

min  ||h; (up — v < 1hZY21y .
wePl(%)mv” 57( ¢ ’Z)HLZ(Q) < & [ f]é’[”Lz(Ué’g)

This proves (5.1d).
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For functions v, € CR,  for all edges E € & it holds fE
Poincaré inequality along E yields the estimate (5.1e).
A standard argument with edge-bubble functions by allows the proof of (5.1f), namely

[v¢]g,ds = 0 and therefore the

1/2 .
Ihy* [Veu Tele li2Usy S min [Veug = Vvl ),

as follows, cf. [43]. The quadratic edge-bubble function by := 4¢,p; is defined for an
edge E := conv{a, b} with end-points a,b € A, subject to the affine nodal functions
Car Py € P1(F). The gradient V,u, is piecewise constant and on an edge E € &, it holds
fE bpds = %IEI. Therefore,

o

hlli'/ZH[VKUZ'TE]é”g = |E| ‘[Veue'TElge f bp [Vew - vg]s, ds|.
E

LY(E)

With V,u, - 75 = Curl, uy - vg, an integration by parts leads to
f b [V - tg]q ds= J Vbg - Curlyu, dx —l—f b div, Curl, u, dx.
E Q Q

The last term vanishes because u, € P;(,) is piecewise affine. Recall that 2; denotes the
patch of the edge E. For all v € V, the orthogonality Vv L;2q) Curl; u, leads to

1/2
IV - 75 g, 2 ~

J Curl bg(V,u, — Vv)dx
WE

The Cauchy inequality implies
1/2
hE/ I[Vug - Telg l2ey S ICurl bl 2o ) Veuy — VVIlL2q,)-

The sum over all edges results in

1/2
(Z hell[Voue - Telg, ||%2(E))

Eeé”@
1/2
S (Z IV g ~ wuﬁm)) < V3[IViug = Vi)
Eeé”@
Since this is valid for all v € Hé(Q), the proof is finished. O

Remark 5.1. For dG discretisations, the consistency residual involves jumps along edges
and faces related to some flux functions. It can be estimated by means of the lifting opera-
tors defined above. As shown in [25], for the jump estimator 7), there holds

1 escons 3 S > 1/hellludli2 =: ¢2. (5.2)
Cecgg
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5.2. Explicit equilibration error estimates

This section is devoted to the estimation of residuals of the form
R(V):J Rg"VdX'i‘J Ry -{vlg, ds (5.3)
Q U

for arbitrary functions R, € L*(Q;R™) and Ry € L*(|J %,;R™) defined for a regular
triangulation 7, of Q with the associated set 6;. Set Ry := R | for triangles/tetrahedrons
T € J; and R¢ := Ry for C € 6. Recall that C can either be an edge (in 2D) or a face
(in 3D) as defined in (4.1).

As mentioned before, the estimation of the dual norm of residuals structured like R
has been subject to intense research in the last decades, cf. [1,8,43]. For any conforming
discretisation considered here, it holds V;* C ker(Zesy ). Moreover, we require the follow-
ing condition for the non-conforming discrete finite element space V;** C H Y, R™) =
{v e L*(R™) | VT € 7, v|y € H'(Q;R™)} and its conforming counterpart VS C V :=
Hy(;R™).

Assumption 5.1. There exists an operator 11 : V; — V;* such that for all v, € V; and all
T € &, it holds

IV (Tv)ll o) S IVVellp2q) and J vy dx :J v, dx. 5.4)
T T
Furthermore, for the discrete approximation p, € L?(€2; R™ ™), it holds
J pe i Vv, dx :f pe : Vi (Ilvy) dx.
Q

Q

Remark 5.2. Assumption 5.1 was introduced in [23] called (H3) to generalise results for
the equilibration residual estimation to a huge set of nonstandard finite elements. The non-
conforming spaces V' in our examples contain the conforming spaces V; C V,*. Hence,
the assumption holds with IT = id |yc. Assumptions (H1),(H2) from that reference are also
automatically fulfilled in all examples of the present paper.

Indeed, for each triangle T € J; and vy € V| := P1(J;R™), fT(vf —Iy,)dx =0
by (5.4) and so Poincaré’s inequality provides

I3 (Ve = TVl 2y S IV Vell2ery + VIVl 2y
The sum over all elements T € J, plus (5.4) implies

k5" (Ve = Tv)llr2(0) S 1Vl 2(0)- (5.5)
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Theorem 5.2. Suppose the linear functional R : V + V" — R satisfies V;"* C kerR for the
non-conforming finite element space V;'“ and can be written in the form (5.3). Moreover,
suppose there is an operator Il according to Assumption 5.1 and consider the estimator

1/2
1/2
N = (Z hC”RC”%z(C)) = ||h<6{ R<g||L2(U<5[)

Ces,

associated to some triangulation &, with the set of free nodes ;. Then m, is a reliable and
efficient estimator for |[R||y+, i.e., it holds

¢ S |IRlly+ + 0sc(Ro, F;) + osc(Rg, &), (5.62)
IRIly+ < m¢ + Osc(Rg, ). (5.6b)

Proof. [of (5.6b)] Let IT : V — V, be the operator of Assumption 5.1 and recall
the approximation operator J, from Definition 4.1. For any v € V, the linearity of R and
[lJ,v €V C kerR imply

R(v)=R(v—-TlJ,v) = J

Ry-(v— HJev)dx—i-J Ry - {v —TlJyvig, ds.
Q

U

The volume term can be estimated with the Cauchy inequality, estimation (4.11) in Theo-
rem 4.2, and with the oscillation (4.4),

f Ry -(v—T1J,v)dx
Q

= Z (J Rr-(v—Jyv)dx +J (Ry —Ryp) - (Jyv — TLJ,v) dx)
T T

Te,

S 0sc(Rg, ANV 1200y + 0sc(Ra, TG (Jpv — T v) | 120
With the estimate (5.5) and the stability of J;, the last norm can be further bounded by
Ih5' ey = W)l 2y S IVTpvllia) S 1V VI2)-
Hence,

f Ry - (v —TLJyv) dx < Osc(Rg, Zp)||vIIg - (5.7)
Q

To analyze the edge/face terms, Cauchy’s inequality leads to

f Ry -{v— HJeV}%é ds < Z ||Rc||L2(c)||{V - HJeV}c||L2(C)~
U< Ce%,
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For each interior edge/face C =T, NT_ € 6, with T, T_ € 7, the trace inequality shows

1 1
v — TTviclliae) < EH(V =)z, 2y + EH(V — W)z L2
1/2 -1/2
ShPIVE = W2 + he v = vl 2.)-
On boundary edges/faces C € 92N J T, the norm
v —TWviclliaey = lv — IWgvll2cy

is estimated by the same bound with Q. = int(T). The sum over all edges/faces of ¢,
reads

J Ry -{v — v, ds
U

SHh};ZR%“LZ(U %) (”V(V - HJEV)”LZ(Q) + ||h}1(v - HJEV)”Lz(Q))'
The approximation and stability property of the last terms is controlled via the split
v—Iyv=—-Jpw)+ v —T1Jv).
First, Theorem 4.2 implies
IV = Il + 152 0 = Tl 2y S 197120,
Second, inequality (5.5) reveals
IV Uy = )Ly + 115 Uy = )20 S 19V
The combination of the two estimates plus (5.7) implies
V(v — HJeV)”LZ(Q) + ||h}1(v - HJEV)”LZ(Q) S ||VV||L2(Q)-

Therefore,
1/2
IRlly- S Ose(Rg, 7) + I3 *Reg L1200 =

Proof. [of (5.6a)] With Q c R™, for an edge or face C = T, N T_ € %, and simplices
T,,T_ €, recall that for the bubble functions

bo=[] ¢. and br= [T v

zeN(C) zeN(T)

it holds for all D € 6, and D # C

f bods=0 and J br ds=0.
D D
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ForC=T,NT_€ %, T.,T_ €7, define the function
Ve =agbe + ocfbeJr +agbr
and choose the two real numbers
) » 1 ; |C|fT+dex
we = 1Cl (Jc ¢ s) T T T b ds [ brdx

In 2D we obtain ay = 6 and a5 = —30, in 3D a simple calculation reveals ay, = 120 and
as = —840. Then, for all C,D € 6,,

J veds=|C|6.p and,forall T € Z,, J vedx =0.
D T
Observe that
= 1/2,15 1/2,15
hé/ZHRc”LZ(c) < hlc/2||Rc _RC”LZ(C) + hc/ ||Rc||L2(c) =o0sc(R¢,C) + hc/ ||Rc||L2(C)

and set ¢ := sign(fc R ds) to obtain

ghé‘/ZHEC”LZ(C) == f ﬁc ds == f ﬁcVC ds == f (ﬁc _RC)VC ds +J Rcvc ds.
C C C

C

The first term of the last line equals osc(R, C). The second term reads
J Reve ds =R(ve) —J Ryvedx =R(vc) — J (Ry —Ry)vc dx.
C we we

With y. := hé/ IRl 12(c) the estimator 7, is bounded by

1/2
m =Y h*relRellze

Ce(gl
< D TR(reve)+2 Y re0seRe, O+ Y vo0se(Ry, Ti(e())
Cesy Ces Cesy

1/2
S IR+l Z revelly + ( Z Y%) (osc(Ry, 6,) + 0sc(Ry, T;)) -

Cesy Ceesy

1/2
Noting that [|X.ccq, Tevelly S ne = (ZCE% y%) yields the desired result

¢ S IRlly+ + 0sc(Ry, 6¢) + 0sc(Rg, 7). O
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6. Poisson problem

This section is devoted to conforming, non-conforming and mixed finite element dis-
cretisations for the Poisson model problem of Section 2.2.

6.1. Conforming finite element methods

Conforming methods with a discrete space V, € V = Hé(ﬂ) approximate the flux
p = Vu by p; := Vu,. The discrete problem reads: Find u, € V;, such that for all v, €V,

Vu,-Vv,dx = J fvedx =L(Vvy,vy).

o (Vuy,ug)(Vvy,vy) = f
Q

Q

Note that the consistency residual vanishes, i.e., Zescons = Zesq = 0.
In order to estimate the equilibrium residual (3.4), we use Theorem 5.2. Let V, =
P.(Z;)NV. An elementwise integration by parts and the product rule

[vpe vele = [pe - vElpvie +{pe - Vel V1 = [pe - vElE{ViE
imply

‘%eseq(v) = %CSV(V) :f fV dx —f pe Vv dx
Q Q

=> f (f +divp v dx + ) f [pe - velpivis ds.
T E

TeT, Ee€é,

Hence, the residual allows the form (5.3) with the local volume and edge terms of the
explicit residual on triangles T € J, and edges E € &, by

Ry :=f|p+divpyly and Rg:=[p;-vglg.
The global residuals then read
Ry :=f+divyp, and Rg:=[p; vele- (6.1)

The equilibrium residual Zesy has the form of Theorem 5.2 and V; C ker Zes,,. Moreover,
Assumption 5.1 holds with IT = idy,. This leads to the error estimator

1/2
e = by *Rell L2 s (6.2)
and to the error estimations
lu —uplly ~ || Zeseqllv+ S e + Osc(Rg, A7),
e S llu—uylly +0sc(Ry, 6;) + 0sc(Ro, 7).

In case of the affine discrete space V, = P;(%;) for m = 1, divVu, = divp,|r = 0 and the
error estimator simplifies to

llu —ugll S mg+O0sc(f,#;) and mn; S |lu—uylly +osc(Ry, 6;) + osc(f, Tp).
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6.2. Non-conforming finite element methods (CR;(Z,))

In the non-conforming Crouzeix-Raviart FEM, the discrete solution u, € V;"* = CR1(7)
solves
A (Voug,up) = Lo +Ly.

This is equivalent to the formulation: Seek u, € CR,(Z;) with

J Vouy - Vv, dx = J fVe dx for all Vy € VKHC(%) (6.3)
Q Q

Recall that the V, denotes the piecewise action of the gradient operator with respect to
the triangulation ;.
Theorem 5.1 yields equivalence of the explicit consistency error estimators for € R?,

1/2
un = I (e = Agu)l 2oy = (Z I (u —A%ug)nizm) :

TeT,

1/2
1/2
Mg 1= ||hg/ [Vuy - T&]&”LZ(U&) = (Z hell [V Te ] ”%Z(E)) ’

Eeé;

1/2
us = Il Tuglg 2 e = (Zh?”[“f]E”f%m) '

Ee€é)

The equilibrium estimators from the previous section in the conforming case can be used
for V, = CR{(%;) since all conditions of Theorem 5.2 are satisfied: The residual Zesy, can
be written in the form (5.3) with R and R, from (6.1) and it holds CR,(%;) C ker Zesy,.

Remark 6.1. The references [23, 24] list examples for non-conforming FEMs where II is
not the identity, e.g. the Rannacher-Turek nonconforming FEM for rotated polynomials on
parallelograms where V| ¢ V™.

6.3. Mixed finite element methods (RT,)
In the mixed Raviart-Thomas FEM of the Poisson model problem (2.3), one seeks the

discrete solution (p,,u;) € Q; X V; :=RTy(F;) X Py(F;) for the solution p := Vu, i.e.

Vg, €Q J Pe-qe dX—J dive qeup dx =0,
¢ “ (6.4)

Vv, €V, J ve divp, dX:Jfo dx.
Q Q

By the Helmholtz decomposition in n = 2 or n = 3 dimensions, there exist functions
a €V =H}(Q)and € H'(Q) with

pe =Va+Curlf and disth(Q)(p,g,VHé(Q)) = || Curl Bl 2(q)-
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We utilize the different definitions of the curl differential operator given in Section 1. With
i, = a it holds, for any q, € Q,,

Resq(qy) = —J (pe —Va)-qdx = f Curl 8 -q,dx. (6.5)
Q Q
The residual (6.5) does not satisfy the conditions in Theorem 5.1 since p, € RT(Z;) does
not belong to the space of piecewise gradients Py(Z;). It holds
2 _ 2
| Resqll3. = lICurl B2,

and the orthogonality Curl § 12y Va implies

||Cur1[5||i2(m = f Curl - (Curlf+Va)dx = J Curl 8 -p,dx.
Q Q

For any function 3, € P, ((7;) with Curl 8, € Py(J;; R") it holds
divCurl, =0 a.e.inQ

and it is an admissible test function in the RT-FEM. To obtain an explicit consistency error
estimator, calculate

JCurlﬁ'pe=J Curl(B — f¢) - pedx
Q Q

= {—J curlpg([o’—[a’g)dx—l-J Pe(ﬁ—ﬁf)'TaTds}
T, T aT

Z—J Curlepe(ﬁ—ﬁe)dx‘i‘z:f(ﬁ—ﬁe) [pe- 7] ds
Q E

Eeé;

and choose 3; = J,[3 for the approximation operator J, (cf. Definition 4.1 and [17]) to
obtain

1/2
1 esconslZ: S IV B2y (11 curly pelly gy + I *[pe - 7615, iz -
With ”ﬁ”Hl(Q) < ||p _pelle(Q)’ it follows that

1/2
1 = Pellizgy S te = g curly pll 2y + 11 [pg - 71 20 -

For the analysis of the efficiency of the error estimator we refer to [16].
_ For the evaluation of Zesy, note that p, € H(div,2) and define f, € Py(J;) satisfying
folr =171 fo dx on every triangle T € J. Then, for all v € Hy(Q) and v, € Py(7;)

analogous to f , it follows

Reseq(v) = Resy(v) 1= f fvdx— f pe-Vvdx
Q Q

:f (f +divp,)vdx = f (f —E)(V —Vvy)dx. (6.6)
Q Q
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For the norms it then holds

1 eseq(Wllizy < D I = Fellizeryllv = Vellzcay-
TeT
On every T € 7, a Poincaré inequality with the Payne-Weinberger constant 1/7 [39] for
v —V € H)(T) yields

_ h
v —=vellp2ery < ;HVVHLZ(T) < hlvlgicry-
These considerations lead to the result
||%€5eq||v* 5 OSC(f,%).

Alternatively, from (6.6) it follows with Ry := f +divp, and Ry = [p, - vg]e = O for
p¢ € RTy(Z;) that Theorem 5.2 yields an equilibrium estimator 1, = ||hi,/ “Rell 2Je) =0
with

”‘%eseq”V* S OSC(Rg,%).

6.4. Discontinuous Galerkin methods

A unified formulation for all common discontinuous Galerkin (dG) schemes was pre-
sented in [4], see also [25]. dG methods are characterized by suitably chosen local nu-
merical flux functions @i and pr which are linear functionals in u, and give rise to global
flux functions @ and p.

The unified problem for the Poisson problem reads: Find u, € V;, and p, € Q, such that,
for all g, € Q; and v, €V, it holds

a(pe,qe) = —f ug divy o dx + Z f ar(vr - qq) ds,
Q oT

TeT,

J P Vv dx :J gvpdx + Z (Br - vr)ve ds.
Q Q

TeZ, JOT

The solution (1, p,) satisfies [4]

pe=Voug+r([a—u]) +s([a-u]).

With the equilibrium error estimator 1, from (6.2) and the consistency error estimator
¢, from (5.2) it holds

lp = pellqg S me + 4.

In case of the Interior Penalty (IP) dG method, the local flux functions are chosen
according to i = {u,} and pr = {Vu,} — a([u,]), where @ > 0 is a sufficiently large
penalty parameter. A convergence analysis and quasi-optimality of the IP dG scheme has
been established in [11]. In particular, it has been shown that the consistency error {, can
be controlled by the estimator 7, in the sense that a {, < 7, for sufficiently large a.
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7. Stokes problem

7.1. Mixed conforming finite element methods

The conforming discrete problem of the Stokes equations in the symmetric formulation
reads: Find u, € V, and p, € Q, such that

Vv, ey, J 2ue(uy): s(ve)dx—J pe divy, dXZJ fvedx,
Q Q

Q

quEQg f qediVuEdXZO
Q

Recall from Section 2.3 that
22 esconsllq; ~ 2ullee(ue) — (@)l 2o mmemy + 1divi [l 2(q)-

In the conforming case, i, = u, implies ||e(u,) — &(f,)|;2(q) = O (the same holds in the
non-symmetrical formulation), and thus, ||%escon5||Qz = ||divuy|| 12()-
The equilibrium residual reads

Reseq(V) ::f f-vdx +J o, :e(v)dx.
Q Q

A piecewise integration by parts argument yields

-
Reseq(v)= | f-vdx —f e(v):opdx
Ja Q

-
:J f-vdx—f o, Vvdx

Q Q
-

=J f-vdx+2(f divop-vdx — f oy vTvds)
Q

Te,

=ZJ(f+diVeog) vdx+ J O¢-vglg-vds.
Eeé;

TeZ,

(7.1)

Hence, in order to apply Theorem 5.2, we set

Ry :=f+divyo, and Rg:=[0; Vels,. (7.2)
With the identity I, one derives the reliable equilibrium estimator

eq = 0sc(Ry, ) + Iy * (00 - velg N2 s (7.3)

for the symmetrical as well as for the non-symmetrical formulation of the Stokes problem.
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Remark 7.1 (Taylor-Hood Elements in 2D). The Taylor-Hood FEM for the non-symmetrical
Stokes equations uses P,-elements for both components of u, and P;-elements for the
approximated pressure p, [12,14]. The error estimator
. 1/2 .
Mg := Neq T ldiv [ 2iq) = Osc(Rg, 7)) + ”hg/ [o¢-velg, ||L2(Ué”g) + [|divugl 2
is reliable and efficient for the overall error || Zeseq|| + || 2 €scons |-

Remark 7.2 (MINI elements in 2D). For the affine nodal basis functions ¢, (cf. Section 5)
the triangle bubble function b; for T = conv{a, b,c} € , is defined by

br := ¢apptpc = ]_[ Pz
zeN(T)

The MINI-FEM in two dimensions uses the discrete spaces [12,14]

2
Vy = (Pio(Z) +span{by | T € Z})” and Q= Py o(F;RY).

The term || divuy||;2(q) is not necessarily zero and therefore, its norm has to be added to
the error estimator. The value of

Mg 1= Neq + |l divy |l 2(q) = Osc(Ry, #) + kYo - velgllizq e +I1divuell 2

is a reliable and efficient estimator for the error norm.

7.2. Non-conforming finite element methods

The equilibrium error estimator of Section 7.1 can also be employed in the non-confor-
ming case.

For the norm of the consistency residual in the non-symmetric formulation of the Stokes
equations as well as (up to a constant) in the symmetric case (7.1), we obtain

1 Z esconsllv ~ 1V (ue) = V(g + 1 divigllo.-

In the non-conforming Crouzeix-Raviart finite element method for the non-symmetric
Stokes problem in two dimensions, one chooses the discrete spaces V; = CR; o(F ;R?)
and Q) = Py(Z;). In this setting it holds that div,u, = 0 and the second term can be
estimated by the first term as follows,

I divillq = Il divy up — divilyllq = || tr(V,ii, — Vug)llg < [1Ve(ue) — V(i)llg-
Then, component-wise application of Theorem 5.1 provides the error estimates

1/2 —-1/2
w1 =12 [Vug - 7] g 2 gm0 p 1= g 2T 2 o,m2)-

Another example is the finite element (P ((7;;R) X CR; o(F;,R)) x Py(7;) of Kouhia
and Stenberg [35] for non-symmetric Stokes which is only non-conforming in one compo-
nent. Hence, Theorem 5.1 again yields error estimates, with u, = (u, 1,1, ) for example

1/2 -1/2
un =l [V 6], 2 e po = llhg " (e 216, 120
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7.2.1. Discontinuous Galerkin Methods

Given some flux functions iir,dr,, 6 and the space

P,?(,%;Rm) = {v e P(7; R™) | J vdx = O},
Q

the unified dG formulation of the Stokes problem reads: Find (uy,0,p,;) € P (Tp; R™) %
P (T R™ M) x PY_ (T3 R™) := X, such that for all (v,w,q) € Xy,

J ngwdxz—,uJ ue-(divew)dx+,uZJ Ur,-(w-vp)ds
Q Q aT

TeT,
—J petr(w) dx,
Q
J O'g:Vngx:f fvdx+ ZJ Gr:(v®vyr)ds,
Q Q Te7, JoT
J u-Vgde= Y | (ar, -vrqds
Q Teg, JoT

are satisfied. As an example, the IP dG scheme is obtained for i, = dr, = {u,} and
61 = {Vup} — a;([ug]). The selection of the parameter a; is described in [41].
The discrete solution (uy, 0y, p,) € X, satisfies the identity [25]

o =uVeuy —pel +ur([a, —uel) +ps([ay —ul).
Suppose that u and o := uVu — p1 solve the Stokes problem and (u,, o) is the solu-

tion of the previous discretisation. From the unified analysis, with the equilibrium error
estimator 1, = (7.3) and with the consistency error estimator {, from (5.2) it holds

llo—ollq S me+ &+ 1Idiveupll 2y S me + &4

8. Lamé problem

8.1. Conforming finite element methods

Conforming methods with a discrete finite element space V, C V approximate the stress
matrix o = Ce(u) by o, := Ce(u,) and the discrete problem therefore turns out to solve
the weak formulation of the Lamé problem: Find the Galerkin solution u, € V;, such that

A (Ce(uy),up) =Ly +Ly.
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This is equivalent to the mixed formulation of the problem: Find u, € V;, and p, € Q, such
that

V1,eQ f (C o, —e(w)): t,dx =0, (8.1a)
Q
Vv ey, J e(vy): oy dXZJ f v dx. (8.1b)
Q Q
In the conforming case considered first, the previous formulation is identical to

J (Cs(ue):s(ve)dxzj f v dx for all v, € V.
Q Q

The consistency residual vanishes for any conforming finite element method, i.e. Zes.ops =

Resqg =0.
Q
Let V, = Pi.(F; R™). In analogy to the derivation of the explicit estimator in Section 7.1,
noting that o, := Ce(u,) is symmetric and using integration by parts, the equilibrium

residual Zes., = Zesy is defined by (3.6) and can be written as in (5.3) with
Ry :=f+divpyo, and Rg:=[0) Vels-

This is identical to (7.2) and again can be used with Theorem 5.2 and IT = idy, which
yields the estimator (7.3). Moreover, from |le[|y1(q) S [lo — 0|l 2(q) One obtains

llo — Uflle(Q) ATy
independent of the material parameter A.

Remark 8.1 (P, x P;). For any conforming finite element method of arbitrary polynomial
degree the usual equilibrium estimator given above is applicable.

8.2. Non-conforming finite element methods

There are different robust non-conforming finite element methods known for elasticity
problems. As an example we consider a construction due to Kouhia and Stenberg [35]
which leads to the discrete space V; := P o(F;) x CR; o(7;). The discrete problem reads:
Find u, € V; such that

f E(Ve)i(cge(UE)dX:f fvpdx for all v, € V.
Q Q

The discrete stress is given by o, := Ce¢;(u,) and while the equilibrium error is estimated by
7¢ as in the conforming case above, the consistency residual Zes.,,s = Zesq = £,(u — iiy)
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does not vanish in the second component and also has to be considered. Since u, satisfies
the requirements of Theorem 5.1, two equivalent reliable consistency estimators are

1/2
= h1/2 v . — h \v4 . 2 ,
Ml & |: uf Tg]é”[ LZ(Uéue) E;g;[ E|||: uf TE:|E||L2(E)
1/2
= || [u = R [, g )12 .
o o= || Tl o Zg} 77 P

8.3. Mixed finite element methods
8.3.1. Plane Elasticity Element with Reduced Symmetry (PEERS)

Some A-robust approximation of the solution of the mixed formulation concerns discrete
spaces of reduced symmetry. For a possibly non-symmetric matrix-valued L2-function A,
we denote the skew-symmetric part of A by

skewA=A—symA=(A—A")/2 and Ry = {BeR™¥|B+B" =0}.

skew

Rdxd

. . dxd ;
sym and for a skew-symmetric matrix B € R it

Notice that for a symmetric matrix A € Cew

holds A: B =0.

The idea behind the PEERS [3] is to allow a non-symmetric stress matrix ¢. In our
notation, a tuple (o, y) denotes such a possibly non-symmetric stress matrix o and a skew-
symmetric matrix y. The equation

skew

J o:ydx=0 forally in some subset of L2 (Q;RdXd
Q

guarantees the symmetry in weak form of o. The spaces
Q:=12 (Q;Rz) XW, W:=L> (Q;RM ) and V:=H (div,Q;RZXZ)

skew

and the bilinear forms

a(u,y;v,6) ::f (u-v+y:6) dx,
Q

b(u,y;0) = J (u-divo +skewo : v) dx,
Q

c(o,7) :zf Clo:tdx, A(o) :=(divo,skew o), ly(o):=0,
Q

€Q(u,y;v,5):=f (f-v+u-v+y:68) dx
Q
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lead to a mixed formulation which includes an additional equation for the weak symmetry
condition, i.e.

Vv el? (Q;]RZ) —J diva-vdXZJ f-vdx, (8.2a)
Q Q
Véew J skewo : 6 dx =0, (8.2b)
Q
VreV f (div1-u+y:skewr+(C_10:T) dx =0. (8.2¢)
Q

PEERS employ the discrete spaces
Qe =Py (T R?) x W,
W, = {w e L* (%RY2) NCO (RS ‘ VT €, 1y P (T;RES }

skew skew skew

V= {ae € H (div, ; R>?) ’ VT €9, oylr €RTH(T) EBBO(T)}.

Here, RT, is the lowest order Raviart-Thomas space and By is the curl of the bubble-
function space for by =[], (1) Pz defined on any T € 7 by

RTy(T) := {a el? (T;RZXZ) ’ o(x)=7t+a-xT,7eR?**? ae Rz} ,
By(T) := {a el? (T;RZXZ) ‘ o(x)=a-Curlby(x)T, a e Rz} .

Note that, in general, skew o, #Z O for the PEERS stress field o,. The following equivalence
is due to the residuals from Section 3.5 for any i, € H! (Q; Rz),

lo —symoyllg + llu—dlly ~ |le(i,) — c! symo |- + [ Zesy |ly+. (8.3)

We remark that in essence the derivation of bounds for the residuals is analogous to the
treatment in Section 6.3. To estimate the consistency term

w := min||e(ii,) — C ' sym ollg (8.4)
iy eV
a Helmholtz decomposition for some symmetric stress in LZ(Q;RE;I%) has been derived
in [19] and results in
Clsymo, = e(a)+ CurlCurl B for some a € Hé(Q)2 and € H3(),

cf. [19,20] for details in slightly different notation. Therefore, the choice of i, = a leads
to the minimum in (8.4) and leads to orthogonality of B := Curl 8 € Curl(H?(Q)) and
V(Hy(2)%)

= minlle(i) ~ €' symollg = |Curl Curl o
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Let J, : HY(Q) — P;(J;) be some quasi-interpolation operator from Section 4.3, set
B := Curl and notice that CurlB, := CurlJ,B € RTy(%;) is an admissible test tensor
in (8.2c) and hence
CurlB, : (C"tsymo, +7v,) dx =0.
Q
This, the aforementioned orthogonality and an element-wise integration by parts lead to

u? = ||CurlB||(22 = J Curl(B—By): (C 'symo, +1v,)dx

Q
= Z HB _Bf”LZ(T) ||curl((C_1 symoy + Y’Z)”LZ(T)
Teg,
+ Z ||B _BKHLZ(E) [C_l Symoy +yd “Tg )

Ec€é)

Since ||B||y1(q) < [|Curl B||, and with the interpolation estimates for HB —B, H on triangles
and edges, it follows eventually that

1/2
us (Z B |jcurl(C™" sym oy + n)Hfzm)

TeT,

1/2
2
+ h Clsymo, + - T .
(1;& E [ ymaoy Y@] E LZ(E))

Recall from (8.2a) that, for o, € V;, it holds

J v (f +divo,)dx=0  forallv, € Py (,%;]RZ).
Q

The equilibrium residual Zesy, is split in the symmetric and the skew-symmetric part of o,
and the observation that e(v) : 0, = Vv : sym o, plus an integration by parts lead, for all
v eQ,to

%esv(v)zj (f-v—e(v):0y) dx
Q

= f (f +divoy)-vdx —J skew(o,) : Vv dx.
Q Q

Note that o, € H(div,€2) and thus there are no jumps across inter-element edges. Let v,
and f,|; =|T|™! f ;divo, dx denote the 7 -piecewise constant averages of v and f. Then,
following the same arguments as for (6.6), Poincaré inequalities result in

f(f+divag)-vdx=—f (v —v)(f —f)dx
Q Q

< Ih5' v = VOll2@yliha (f = F Ol

< Vvl 2 0sc(f, Z)/ 7.
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With higher-order oscillations osc(f, 7;) for f € HY(Z;)?, it follows
| Zesy |y« < llskew oy || 2(q) + osc(f, F)/ .
The non-symmetric stress error of o, is split into
llo — agll(z2 =|lo —sym agll(z2 + ||skewae||(22.
This amounts to the final a posteriori error estimate
lo = ollg < bt Iesqly- + liskewarlg

with a reliability constant (behind the notation <) which does not depend on A or hg.

8.3.2. Arnold-Winther finite elements

Arnold and Winther proposed a mixed finite element method with symmetric stress field
(cf. [7]). These elements are locking-free in numerical experiments and satisfy the pre-
dicted convergence rates, cf. [21].

One seeks the displacement field u € L? (Q ; ]RZ) and the stress tensor

oc€H (div, Q; szz)

sym

satisfying the mixed problem (8.1). We consider the spaces

vi=H (dv,%RE2), Q=12 (R?),

sym
and their discrete counterparts, on any triangle T € &,
Vp = {T e P, (T;Rfyxnf) | divr e Pl(T;RZ)},
Q=P (%;Rz) :

Given the data f € L?(Q;R?), the weak formulation of the linear Lamé problem reads:
Find (o,u) € V x Q such that

J O'ZC_l’CdX-i-J u-divtdx=0 forallteV,
Q Q

fv-divadxz—ff-vdx for all v € Q. (8.5)
Q Q

The corresponding discrete solution in the discrete spaces defined above is denoted (o, uy).
We refer to Section 3.5 and stress that o, is symmetric. The analysis follows that of the
previous section and starts with (8.3). The equilibrium residual reads

Resy(v) ::f f-v dx—f e(v):0,= f (f +divoy)-vdx.
Q Q Q
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Analogous to Section 8.3.1, it can be estimated by osc(f,J;) := ming,cp (5,2 llhe (f — f)ll-
The consistency residual reads

Resq(T) = J (e(ity)) —C o) : T dx.
Q

8.3.3. Discontinuous Galerkin methods

Given some numerical fluxes iy ,,dr,,, €7, pr and the space P]? (Q;R™) as in Section 7.2.1,
the unified dG formulation of the Lamé problem reads: Find (&;,u,,py) € P (2;RIX™) x

sym
P (;R™) x PY(Q; R™) =: Q such that, for all (1, v,q) € Qy, it holds

(2uey —pel) : Dyv dx :J g-vdx+ Z (2uép —prl):v Q@ vy ds,
Q TeZ, JoT

1 X
7P dx= | u;-Vyqdx — Z (@rp - vr)q ds.
Q

J TEF YO T,

We obtain the IP dG scheme with the fluxes iy, = ir, = {y;}, ér = {e(u,)} and py =
—A{divuy,}, for instance.

Set 0, :=2ue, —p,1 and assume a discrete solution (&,,u,, p,). Then, with parameters
Ky, d, B, ¢y, ¢y from [30,32] and [25],

Ly=—r([w])+cs([u]-B) and Ly =r ([u]) +cos (d-[ue] +x,[pe])

satisfy

Clo,=e(u)+1L, - (Ly+tr(Ly))1

nA+2u
for some ¢;,c, € {—1,0,1}. Moreover, the following error bound can be shown
1/2
lo=oully Sme+e+ | D, kil

Ce6rn

9. Eddy current problem

9.1. Conforming edge element methods

The curl-conforming approximation of the eddy current equation (2.6) by means of the
lowest order edge elements of Nédélec’s first family [37,38] with respect to a simplicial
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triangulation J; of the computational domain © < R3 amounts to the computation of

uy € Nd, o(7;) such that

f (,u_l curlu, - curlv, + ouy -ve) dx = ff -vgdx for all vy € Nd o(F).
Q Q

Consequently, in (3.7),(3.8) we may choose i, = uy and p, = u~ ! curlu,. For the consis-
tency residual Zes s = Zes, it follows that

Resq(q) =0 forall g € Nd; o(F).

On the other hand, the equilibrium residual Zes., = Zesy reads

%esv(v)zf (f—aug)-vdx—f p;-curlvdx forallv eV
Q Q

Following [2], we may decompose v € V by means of
v=2+Vy for z € ker(curDt and pE Hcl)(Q),

so that the equilibrium residual splits accordingly,

%esg})(z) = J (f —ow) -zdx — J py - curlz dx for z € ker(curl)*, (9.1a)
Q Q

wes9)i= | (F-ou)-Vpda forp SHY(@. 0D
Q

An elementwise application of Stokes’ theorem resolves the second integral on the right-
hand side of (9.1a) to

Jpe-curlzdxz—J v/\(pg/\v)-(z/\v)da+J curlp, -zdx.
T aT T

Hence,

%esg,l)(z) = Z J (f —ouy —curlpy) -z dx
T

TeZ,

+ Z J [vA(pe AV)]r-(z2Av)do forz e ker(curl)*t.
Feg[ F

On the other hand, for ¢ € Hé(ﬂ) an elementwise Green’s formula on the right-hand side
in (9.1b) results in

%es‘(/z)(np)z Z J div(ou, — f) ¢ dx+ Z J v-(f —ou)lr ¢do.
T F

TET, FeZ,
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Introducing the element residuals

RY := (f — ouy — curlp,) |T and R :=div(ou, - f)

T’
and the face residuals

R :=[vA(Av)], and RY:=[v-(f —ou)],,
and applying Theorem 4.1 and Theorem 5.2 yield the equilibrium error estimator (cf.
[33,40])

1/2

2
N = Z (Z hZTIIRg{)IIfz(T) + Z hF||R;J)||%2(F)) . 9.2)

j=1 \TeZ FeZ,

9.2. Discontinuous Galerkin methods

We consider an Interior Penalty Discontinuous Galerkin (IP dG) method for the eddy
current equations (2.6). Given a geometrically conforming, shape-regular simplicial trian-
gulation J; of the computational domain Q C R, the discrete spaces V, and Q, are chosen
as elementwise polynomials of degree < p,

V= Pp(%;RB) and Qg:= Pp(%;RB).
For u,,v, € V, and q, € Q, we set

Jy(ug,vp) := Z f ({v A(curl uy Av)}p —aly, /\v]F) -[veAV]pdo,
F

FeZ,

Jo(ve,qq) := Z J vAq AV vy AV]pdo,
F

FeZ,

where a > a,,;, > 0 is some suitably chosen penalty parameter. The mixed formulation of
the Interior Penalty Discontinuous Galerkin Method reads: Find (u,, p;) € V; X Q, such that

a(pe,qe) — b(ug, q0) = Lo(qe) +Jq(uye,q,) forall gy €Qy, (9.3a)
b(ve,pe) +c(ug,ve) = Ly(vy) +Jy(ug,v,) forallv, €V,. (9.3b)

We note that the classical formulation in the primal variable reads: Find u, € Vj, such that,
for all v, € V, there holds

c(up,vy) + Z (u™t curluy, curl Vo)Lt
TeT, (9.4)

=€Q(,u_1 curlvy) + £y (vg) +Jo(uy, u™t curlvy) 4+ Jy (ug, vp).
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Remark 9.1. It is easy to see that the formulations (9.3)-(9.4) are formally equivalent in
the following sense. If (1, pp) € V; X Q, solves (9.3), then u, € V; solves (9.4). Conversely,
if uy € V, solves (9.4), then there exists some p, € Q, such that (u,,p,) solves (9.3)
(cf. Theorem 4.1 in [22]).

The consistency error associated with the solution (1, p,) € V; x Q, of (9.3) is given by
Uy := min (llu — 9|12, + || curly up — curl ¥, ||? ) /
E ey U e e M)
where curl, stands for the elementwise curl. The minimum is attained with a minimizer
ﬁe evV,i.e.,

2

p7 = llug — ﬁg”iz(ﬂ) + || curlyu, — curlﬁelle(m.

Choosing p, := u~! curlii, € Q, the residuals Zes, and Resq are given by

Resy(v) = J (f-v—,u_lcurleﬁg-curlv—aﬁg-v)dx, vevy,
Q

Resp(q) =0, qeE€Q.

Since Jy (uy,vy) = 0 for v, € Nd; o(;), an application of Stokes’ theorem shows, for all
Ve € Ndl,O(‘%)a

Resy(ve) = c(uy — 1y, vy)-
The unified theory leads to
I(u =T, p — Pellvxq S Me + e,

where the estimator 7, is as in (9.2) with the element and face residuals Rgf),Rg), 1<i<2,
given by

R(Tl) = hyp (f —ouy —curly™! curlug)

. R(TZ) :=hpdiv(f —ouy)

T’
RW .= n/? [v A (u™tcurly, /\V):|F, RP = h? [v- (f —ou)],.

An estimate [i, for the consistency error u, has been provided in Proposition 4.1 of [34]
according to
wsat=a o bt AvIplZg,
FeZ,(Q)

which yields

l(u—1ig,p — pllysg S Me + -
As in the case of the IP dG scheme for second order elliptic boundary value problems (cf.,
e.g., Lemma 3.6 in [11]), it is not difficult to see that [i, can be controlled by the estimator
1. In fact, for sufficiently large penalty parameter a it holds

1/2

a | Do hptllugAvIelZg, | Sne
Fegg(ﬂ)
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so that we arrive at

l(w—1tig,p — P)llvxq S Me-
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