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Abstract. The Ambrosio-Tortorelli functional is a phase-field approximation of the Mu-
mford-Shah functional that has been widely used for image segmentation. It has the
advantages of being easy to implement, maintaining the segmentation ability, and Γ-
converging to the Mumford-Shah functional as the regularization parameter goes to ze-
ro. However, it has been observed in actual computation that the segmentation ability
of the Ambrosio-Tortorelli functional varies significantly with different values of the pa-
rameter and it even fails to Γ-converge to the original functional for some cases. In this
paper we present an asymptotic analysis on the gradient flow equation of the Ambrosio-
Tortorelli functional and show that the functional can have different segmentation be-
havior for small but finite values of the regularization parameter and eventually loses
its segmentation ability as the parameter goes to zero when the input image is treatd
as a continuous function. This is consistent with the existing observation as well as the
numerical examples presented in this work. A selection strategy for the regularization
parameter and a scaling procedure for the solution are devised based on the analysis.
Numerical results show that they lead to good segmentation of the Ambrosio-Tortorelli
functional for real images.

AMS subject classifications: 65M50, 65M60, 94A08, 35K55
Key words: Regularization, image segmentation, phase-field model, moving mesh, mesh adapta-
tion, finite element method.

1. Introduction

Segmentation for a given image is a process to find the edges of objects and partitions
the image into separate parts that are relatively smooth. It has been achieved in mathe-
matics by minimizing functionals and multiple theories have been developed. One of the
most commonly used functionals, proposed by Mumford and Shah [28], takes the form

E[u,Γ] =
α

2

∫

Ω\Γ

|∇u|2d x + βH1(Γ) +
γ

2

∫

Ω

(u− g)2d x , (1.1)
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where Ω is a rectangular domain, α, β , and γ are positive parameters, g is the grey level
of the input image, u is the target image, Γ denotes the edges of the objects in the image,
and H1(Γ) is the one-dimensional Hausdorff measure. Upon minimization, u is close to g,
∇u is small on Ω \ Γ, and Γ is as short as possible. An optimal image is thus close to the
original one and almost piecewise constant. Moreover, the terms in (1.1) represent differ-
ent and often conflicting objectives, making its minimization and thus image segmentation
an interesting and challenging topic to study.

To avoid mathematical difficulties caused by the H1(Γ) term, De Giorgi et al. [8] pro-
pose an alternative functional as

F[u] =
α

2

∫

Ω

|∇u|2d x + βH1(Su) +
γ

2

∫

Ω

|u− g|2d x , (1.2)

where Su is the jump set of u. They show that (1.2) has minimizers in SBV (Ω) (the space
of special functions of bounded variation) and is equivalent to (1.1) in the sense that if
u ∈ Ω is a minimizer of (1.2), then (u,Su) is a minimizer of (1.1), where Su is the closure
of Su.

Although it is a perfectly fine functional to study in mathematics, (1.2) is not easy to
implement in actual computation due to the fact that the jump set of the unknown function
and its Hausdorff measure are extremely difficult, if not impossible, to compute. To avoid
this difficulty, Ambrosio and Tortorelli [1] propose a regularized version as

ATε[u,φ] =
α

2

∫

Ω

(φ2 + kε)|∇u|2d x + β

∫

Ω

�

ε|∇φ|2 +
1

4ε
(1−φ)2
�

d x +
γ

2

∫

Ω

|u− g|2d x , (1.3)

where ε > 0 is the regularization parameter, kε = o(ε) is a parameter used to prevent the
functional from becoming degenerate, and φ is a new unknown variable which ideally is
an approximation of the characteristic function for the complement of the jump set of u,
i.e.,

φ(x)≈ χu(x)≡

(

0, if x ∈ Su,

1, if x /∈ Su.
(1.4)

They show that ATε has minimizers u ∈ SBV (Ω) and φ ∈ L2(Ω) and Γ-converges to F(u).
Γ-convergence, first introduced by Ennio de Giorgi, is a concept that guarantees the min-
imizer of a regularized functional converges to that of the original functional as the regu-
larization parameter goes to 0.

The first finite element approximation for the functional ATε is given by Bellettini and Cos-
cia [4]. They seek linear finite element approximations uh and φh to minimize

ATε,h[uh,φh] =
α

2

∫

Ω

�

φ2
h + kε
�

|∇uh|
2d x + β

∫

Ω

�

ε|∇φh|
2+

1

4ε
πh((1−φh)

2)

�

d x

+
γ

2

∫

Ω

πh((uh− gε)
2)d x , (1.5)

where πh is the linear Lagrange interpolation operator and gε is a smooth function which
converges to g in the L2 norm as ε→ 0. They show that ATε,h Γ-converges to F(u) when
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the maximum element diameter is chosen as h = o(ε). A finite element discretization of
ATε was first applied to image segmentation by Bourdin [5]. It should be pointed out that
Feng and Prohl [13] have established the existence and uniqueness of the solution to an
initial-boundary value problem (IBVP) of the gradient flow equation of (1.3) and proven
that a finite element approximation of the IBVP converges to the continuous solution as
the mesh is refined.

It is noted that the Ambrosio-Tortorelli functional (1.3) is actually a phase-field ap-
proximation of the Mumford-Shah functional (1.1). Phase-field modeling has been used
widely in science and engineering to handle sharp interfaces, boundaries, and cracks in
numerical simulation of problems such as dendritic crystal growth [23,36], multiple-fluid
hydrodynamics [24, 31, 32, 37], and brittle fracture [6, 14, 27]. It employs a phase-field
variable φ, which depends on a regularization parameter ε describing the actual width of
the smeared interfaces, to indicate the location of the interfaces. Phase-field modeling has
the advantage of being able to handle complex interfaces without relying on their explicit
description. Mathematically, phase-field models such as (1.3) have been studied extensive-
ly (e.g., see [1]) for Γ-convergence. However, few studies have been published for the role
of the regularization parameter in actual simulation. It is a common practice that a specific
value of ε is used without discussion or explanation in phase-field modeling. Even worse, it
has been observed [26,29,34] that a phase-field model for brittle fracture simulation does
not Γ-converge as ε→ 0 and ε can be interpreted as a material parameter since its choice
influences the “critical stress”. More recently, ε has been chosen as a material parameter
based on theoretical and experimental analyses of a simplified phase-field model [11].

The objective of this paper is to study the effects of the regularization parameter in
(1.3), a special example of phase-field modeling in image segmentation. We consider the
gradient flow equation of the functional ATε subject to a homogeneous Neumann bound-
ary condition and carry out an asymptotic analysis for the solution of the corresponding
IBVP as ε → 0. We show that, when g is continuous, the functional can have different
segmentation behavior for small but finite ε and eventually loses its segmentation ability
for infinitesimal ε. This is consistent with the existing observation in phase-field modeling
and with the numerical examples to be presented. The analysis is also used to devise a se-
lection strategy for ε and a scaling for u and g. Numerical results with real images confirm
that the strategies can lead to good segmentation of ATε in the sense that φ is close to the
characteristic function of the jump set of the approximation u of g (cf. (1.4)).

An outline of the paper is as follows. The asymptotic analysis is given in Section 2,
followed by a moving mesh finite element method in Section 3. Illustrative numerical
examples are given in Section 4. A selection strategy for ε and scaling of u and g as well
as examples with several real input images are presented in Section 5. Finally, Section 6
contains conclusions.

2. Behavior of the minimizer of ATε as ε→ 0 for continuous g

We first explain why we consider g as a continuous function. In image segmentation,
the function g represents an image and is given the grey-level values at the pixels. Gener-
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ally speaking, the values of g at points other than the pixels are needed in finite element
computation. These values are computed commonly through (linear) interpolation of the
values at the pixels. This means that g is treated as a continuous function in finite ele-
ment computation and such a treatment is independent of the regularization parameter.
Thus we consider g as a continuous function and want to study how the minimizer of ATε
behaves as ε→ 0.

To this end, we consider the gradient flow equation of functional (1.3),
(

ut = α∇ · ((kε+φ
2)∇u)− γ(u− g),

φt = 2βε∆φ−α|∇u|2φ + β

2ε
(1−φ),

t > 0, x ∈ Ω (2.1)

subject to the homogeneous Neumann boundary condition

∂ u

∂ n
=
∂ φ

∂ n
= 0 for x ∈ ∂Ω, (2.2)

and the initial condition

u(x , 0) = u0(x), φ(x , 0) = φ0(x), x ∈ Ω. (2.3)

This IBVP has been studied and used to find a local minimizer of (1.3) (as a steady-state
solution) by a number of researchers. For example, Feng and Prohl [13] have established
the existence and uniqueness of the solution of the IBVP and proven that a finite element
approximation converges to the continuous solution as the mesh is refined.

By assumption, g ∈ C0(Ω). Then we can expect that the solution u and φ of the
IBVP is smooth. To see the behavior of the solution as ε→ 0, we consider the asymptotic
expansion of u and φ as

u= u(0) + εu(1) + ε2u(2) + · · · , (2.4a)

φ = φ(0) + εφ(1) + ε2φ(2) + · · · . (2.4b)

Inserting these into (2.1), we get

u
(0)
t + εu

(1)
t + O (ε

2) = α∇ ·
��

o(ε) + (φ(0) + εφ(1) + o(ε))2
�

∇(u(0)

+εu(1) + O (ε2))
�

− γ
�

u(0) + εu(1) +O (ε2)− g
�

, (2.5a)

φ
(0)
t + εφ

(1)
t +O (ε

2) = 2βε(∆φ(0) + ε∆φ(1) + O (ε2))−α
�

�

�∇u(0) + ε∇u(1)

+O (ε2)
�

�

2
d ·
�

φ(0) + εφ(1) + O (ε2)
�

+
β

2ε

�

1−φ(0) − εφ(1) −O (ε2)
�

, (2.5b)

where we have used kε = o(ε). Collecting the O (1) terms in (2.5a), we have

u
(0)
t = α∆u(0) − γ(u(0) − g), in Ω. (2.6)

Similarly, collecting the O (1/ε) terms and O (1) terms in (2.5b) we get

β

2

�

1−φ(0)
�

= 0, φ
(0)
t = −α
�

�∇u(0)
�

�

2
φ(0) −

β

2
φ(1).
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From these we obtain

φ = 1− ε
2α

β

�

�∇u(0)
�

�

2
+ O (ε2). (2.7)

Like u, u(0) also satisfies the homogeneous Neumann boundary condition. Since g ∈ C0(Ω),
it can be shown (e.g., see [12]) that u(0) has continuous second-order derivatives and thus
∇u(0) is bounded. Combining this with (2.7) we conclude that φ → 1 as ε→ 0. Since the
boundaries between different objects in u are indicated by φ = 0, this implies that u is a
single object and there is no segmentation as ε → 0 when g is continuous. Moreover, u

and thus u(0) are kept close to g and we can expect ∇u(0) to be large in the places where
∇g is large. From (2.7) we can see that, for small but not infinitesimal ε, φ can become
zero at places where ∇g is large. In this case, the functional will have good segmentation
(cf. the numerical examples in Section 4). We have seen so far that the choice of the
regularization parameter in (1.3) can be crucial for image segmentation: different values

of ε can lead to very different segmentation behavior of the functional and its segmentation

ability will disappear as ε→ 0.
It should be emphasized that the above observation is not in contradiction with the

theoretical analysis made in [1] for the Γ-convergence and segmentation ability of the
functional (1.3). In [1], these properties are analyzed for u ∈ SBV (Ω), implicitly implying
that u is discontinuous in general. The above analysis has been made under the assumption
that g, and thus u are continuous although they may have large gradient from place to
place.

It is instructive to see some transient behavior of the solution to the gradient flow
equation. To simplify, we drop the diffusion term in the second equation in (2.1) and get

φt = −α|∇u|2φ +
β

2ε
(1−φ). (2.8)

It has been proven in [13] that the solution of (2.1) satisfies 0 ≤ φ ≤ 1. From this we
see that the first term on the right-hand side of (2.8) is nonpositive, which will make φ
decrease, and the second term is nonnegative, making φ increase. These two terms will
compete and reach an equilibrium state. Moreover, if φ = 1, we have φt = −α|∇u|2 ≤ 0,
meaning that as long as |∇u| 6= 0, the first term will decrease φ until φt = 0 is reached.
Similarly, if φ = 0, we have φt =

β

2ε
> 0, which means φ will increase until the system

reaches its equilibrium. The equilibrium values of φ can be obtained by setting the right-
hand side of (2.8) to be zero, i.e.,

φ ≈
β

β + 2εα|∇u|2
. (2.9)

Thus, the equilibrium value of φ is around 1 for smooth regions where ∇u is small and
around 0 on edges where ∇u is large.

3. The adaptive moving mesh finite element method

In this section we describe an adaptive moving mesh finite element method for solving
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the gradient flow equation (2.1). Recall that a crucial requirement for the Ambrosio-
Tortorelli Approximation (1.3) of the Mumford-Shah functional is that ε must be small.
Since the width of object edges is of the same order of ε, the size of the mesh elements
around the edges should be of the same order of ε or smaller for any finite element ap-
proximation to be meaningful. On the other hand, the mesh elements do not have to be
that small within each object where u and φ are smooth. Thus, mesh adaptation is neces-
sary for the efficiency of the finite element computation. A numerical example illustrating
the efficiency of mesh adaptation will be presented in Section 5. We use here the MM-
PDE moving mesh method [21, 22] that has been specially designed for time dependent
problems.

It should be pointed out that a number of other moving mesh methods have been
developed in the past and there is a vast literature in the area. The interested reader is
referred to the books or review articles [2, 3, 7, 22, 33] and references therein. Moreover,
moving mesh methods have been successfully applied to phase-field models, e.g., see [10,
25,30,35,38–40].

It is remarked that the spatial domain Ω is typically a rectangular domain for image
segmentation. However, finite element computation is not subject to this restriction. More-
over, we will consider examples in both one and two dimensions for illustrative purpose
in the next section. For these reasons, we consider Ω as a general polygonal domain in
d-dimensions (d = 1 and 2).

3.1. Finite element discretization

We now consider the integration of (2.1) up to a finite time t = T . Denote the time
instants by

0= t0 < t1 < · · ·< tn f
= T.

For the moment, we assume that a simplicial mesh for Ω is given at these time instants, i.e.,
T n

h
, n = 0, · · · , n f , which are considered as the deformation from each other and have the

same number of the elements (N) and the vertices (Nv) and the same connectivity. Such a
mesh is generated using the MMPDE moving mesh strategy to be described in Section 3.2.

For the finite element discretization of (2.1), the mesh is considered to change linearly
between tn and tn+1, i.e.,

x j(t) =
t − tn

tn+1 − tn

xn+1
j
+

tn+1 − t

tn+1 − tn

xn
j , j = 1, · · · , Nv, t ∈ (tn, tn+1),

where x j(t), xn
j , and xn+1

j
( j = 1, · · · , Nv) denote the coordinates of the vertices of Th(t),

T n
h

, and T n+1
h

, respectively. Denote the linear basis function associated with the j-th vertex
by ψ j(·, t) and let Vh(t) = span{ψ1, · · · ,ψNv

}. Then, the weak formulation for the linear
finite element approximation for (2.1) is to find uh(·, t), φh(·, t) ∈ V h(t), 0 < t ≤ T such
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that
∫

Ω

∂ uh

∂ t
vd x = −α

∫

Ω

(kε +φ
2
h)∇uh · ∇vd x

− γ

∫

Ω

(uh− g)vd x = 0, ∀v ∈ V h(t), (3.1a)

∫

Ω

∂ φh

∂ t
vd x = −2βε

∫

Ω

∇φh · ∇vd x −α

∫

Ω

|∇uh|
2φhvd x

+
β

2ε

∫

Ω

(1−φh)vd x , ∀v ∈ V h(t). (3.1b)

This is almost the same as that for the finite element approximation on a fixed mesh. The
main difference lies in the time differentiation. To see this, expressing uh into

uh(x , t) =

Nv
∑

i=1

ui(t)ψi(x , t), (3.2)

and differentiating it with respect to time, we get

∂ uh(x , t)

∂ t
=

N v
∑

i=1

dui

d t
ψi(x , t) +

N v
∑

i=1

∂ψi(x , t)

∂ t
ui(t).

It is known (e.g., see [22]) that

∂ ψi

∂ t
= −∇ψi · Ẋ , a.e. in Ω,

where

Ẋ =

Nv
∑

i=1

ẋ iψi(x , t),

and ẋ i ’s denote the nodal mesh speed. Combining the above results, we obtain

∂ uh

∂ t
=

Nv
∑

i=1

dui

d t
ψi −∇uh · Ẋ .

Similarly,

φh(x , t) =

N v
∑

i=1

φi(t)ψi(x , t),
∂ φh

∂ t
=

Nv
∑

i=1

dφi

d t
ψi −∇φh · Ẋ .

From these we can see that mesh movement introduces an extra convection term. Inserting
these into (3.1) and taking v = ψ j successively, we can rewrite (3.1) into an ODE system
in the form

(

M(X )U̇ = F(Ẋ , X ,Φ, U , X ),

M(X )Φ̇ = G(Ẋ , X ,Φ, U , X ),
(3.3)

where M(X ) is the mass matrix. This system for U and Φ is integrated from tn to tn+1 using
the fifth-order Radau IIA method (see, e.g., Hairer and Wanner [16]), with a variable time
step being selected based on a two-step error estimator [15].
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3.2. The MMPDE moving mesh strategy

We now describe the generation of T n+1
h

using the MMPDE moving mesh strategy
[22]. For this purpose, we denote the physical mesh by Th = {x1, · · · , xNv

}, the reference
computational mesh by T̂c,h = {ξ̂1, · · · , ξ̂Nv

} (which is chosen as the very initial physical
mesh in our computation), and the computational mesh Tc,h = {ξ1, · · · ,ξNv

}. We assume
that all of these meshes have the same number of elements and vertices and the same
connectivity. Then, for any element K ∈ Th there exists a corresponding element Kc ∈ Tc,h.
We denote the affine mapping between Kc and K by FK and its Jacobian matrix by F ′K .

A main idea of the MMPDE moving mesh strategy is to view any adaptive mesh as a
uniform one in the metric specified by a certain tensor. A metric tensor (denoted by M) is
a symmetric and uniformly positive definite matrix-valued function defined on Ω. In our
computation, we chooseM to be a piecewise constant function depending on uh as

MK = det(|HK |)
− 1

d+4 |HK |, ∀K ∈ Th, (3.4)

where HK is a recovered Hessian of uh on element K , |HK | = Qdiag(|λ1|, · · · , |λd |)Q
T ,

assuming that the eigen-decomposition of HK is Qdiag(λ1, · · · ,λd)Q
T , and det(|HK |) is the

determinant of |HK |. The recovered Hessian in K is obtained by twice differentiating a
local quadratic polynomial fitting in the least-squares sense to the nodal values of uh at the
neighboring vertices of the element. The form of (3.4) is known [18] optimal with respect
to the L2 norm of linear interpolation error. With this choice of M, we hope that the mesh
elements are concentrated in the regions of object edges where the curvature of u is large.

The mesh Th being uniform in metric M will mean that the volume of K in M is pro-
portional to the volume of Kc with the same proportional constant for all K ∈ Th and K

measured in M is similar to Kc. These requirements can be expressed mathematically as
the equidistribution and alignment conditions (e.g., see [22]),

|K |
p

det(MK) =
σh|Kc|

|Ωc|
, ∀K ∈ Th, (3.5a)

1

d
tr
�

(F ′K)
−1
M
−1
K (F

′
K)
−T
�

= det
�

(F ′K)
−1
M
−1
K (F

′
K)
−T
� 1

d , ∀K ∈ Th, (3.5b)

where |K | and |Kc| denote the volume of K and Kc, respectively, d is the dimension of Ω,
tr(·) denotes the trace of a matrix, and

|Ωc| =
∑

Kc∈Tc,h

|Kc|, σh =
∑

K∈Th

|K |
p

det(MK).

An energy functional associated with these conditions has been proposed in [17] as

Ih(Th,Tc,h) = θ
∑

K∈Th

|K |
p

det(MK)
�

tr((F ′k)
−1
M
−1
K (F

′
K)
−T )
�

dp

2

+ (1− 2θ)d
dp

2

∑

K∈Th

|K |
p

det(MK)





|Kc|

|K |
p

det(MK)





p

, (3.6)
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where θ ∈ (0,0.5] and p > 1 are two dimensionless parameters. In our computation,
we take θ = 1/3 and p = 1.5 which are known from experience to work well for most
problems.

Notice that Ih is a function of Th and Tc,h. We can take Tc,h as the reference com-
putational mesh T̂c,h and minimize Ih with respect to Th. With the MMPDE strategy, the
minimization is carried out by integrating a modified gradient system of Ih,

∂ x i

∂ t
= −

Pi

τ

�

∂ Ih

∂ x i

�T

, i = 1, · · · , Nv , t ∈ (tn, tn+1], (3.7)

where ∂ Ih

∂ xi
is a row vector, Pi = det(M(x i))

p−1
2 is a positive function chosen to make (3.7)

invariant under the scaling transformation ofM, and τ > 0 is a positive parameter used to
adjust the time scale of mesh movement. Starting from T n

h
, we can integrate (3.7) (with

proper modifications for the boundary vertices to allow them to slide on the boundary)
from tn to tn+1 to obtain T n+1

h
. Special attention may be needed for the computation of

the metric tensor that is typically available only at T n
h

(the mesh at t = tn). During the
integration of (3.7), the location of the physical vertices changes, and the values of M at
these vertices should be updated via interpolation of its values on the vertices of T n

h
. It is

also worth mentioning that the mesh governed by (3.7) is known [20] to stay nonsingular
if it is nonsingular initially.

To avoid the need of constantly updating the metric tensor M during the integration
of the mesh equation, we now consider an indirect approach of minimizing Ih. In this
approach, we choose Th = T

n
h

and minimize Ih with respect to Tc,h. Then the MMPDE for
the computational vertices reads as

∂ ξi

∂ t
= −

Pi

τ

�

∂ Ih

∂ ξi

�T

, i = 1, · · · , Nv, t ∈ (tn, tn+1]. (3.8)

Starting from T̂c,h, this equation can be integrated from tn to tn+1 to obtain a new compu-
tational mesh T n+1

c,h . In our computation, we use Matlab R© function ode15s, a Numerical
Differentiation Formula based integrator, for this purpose. Note that T n

h
and M = Mn

are fixed during the integration and T n
h

and T n+1
c,h form a correspondence. Denote the

correspondence by Ψh, i.e., T n
h
= Ψh(T

n+1
c,h ). Then, the new physical mesh is defined as

T n+1
h

= Ψh(T̂c), (3.9)

which can be readily computed using linear interpolation.
A benefit of the above ξ-formulation is that the derivative ∂ Ih/∂ ξi in (3.8) can be

found analytically using the notion of scalar-by-matrix differentiation [19] and has a rela-
tively simple, compact matrix form. Using this, we can rewrite (3.8) into

∂ ξi

∂ t
=

Pi

τ

∑

K∈ωi

|K |vK
iK

, i = 1, · · · , Nv , (3.10)
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where ωi is the patch of the elements containing x i as a vertex, the index iK denotes the
local index of x i in K , and vK

iK
is the local velocity contributed by the element K to the

partial derivative ∂ Ih

∂ xi
. The local velocities on element K are given by









(vK
1 )

T

...
(vK

d
)T









= −E−1
K

∂ G

∂ det(J)
−

∂ G

∂ det(J)

det(ÊK)

det(EK)
Ê−1

K , vK
0 = −

d
∑

i=1

vK
d , (3.11)

where EK = [x
K
1 − xK

0 , · · · , xK
d
− xK

0 ] and ÊK = [ξ
K
1 − ξ

K
0 , · · · ,ξK

d
− ξK

0 ] are the edge ma-
trices of K and Kc, respectively, J = (FK)

−1 = ÊK EK
−1, G = G(J, det(J),MK) is a function

associated with the meshing energy functional, and ∂ G/∂ J and ∂ G/∂ det(J) are the par-
tial derivatives of G with respect to the first and second arguments, respectively. For the
meshing energy functional (3.6), we have

G = θ
p

det(MK)(tr(JM
−1
K J

T ))
dp

2 + (1− 2θ)d
dp

2

p

det(MK)





det(J)
p

det(MK)





p

,

∂ G

∂ J
= dpθ
p

det(MK)
�

tr(JM−1
K J

T )
�

dp

2
−1
M
−1
K J

T ,

∂ G

∂ det(J)
= p(1− 2θ)d

dp

2 det(MK)
1−p

2 det(J)p−1.

4. Numerical results: behavior of (u,φ) as ε→ 0

In this section we present numerical results obtained with the moving mesh finite ele-
ment method described in the previous section to illustrate the analysis in Section 2. We
choose two analytical functions for g, with one each in one dimension and two dimensions,
to simulate the grey-level values of images. In particular, the sharp jumps in g model the
object edges in the image.

Example 4.1 (1D hyperbolic tangent). In this example, we take

g = 0.5(1+ tanh(100(x − 0.5))), x ∈ (0,1), (4.1)

which has a sharp jump at x = 0.5. The initial conditions are taken as u0 = g and φ0 = 1.
We take N = 200, α = 0.01, β = 10−3, γ = 10−3, and kε = 10−9. The computed solution
at three time instants for ε = 0.1, 0.01, and 10−5 is shown in Fig. 1. It can be seen that the
mesh concentrates around and follows the sharp jumps in the solution. This demonstrates
the mesh adaptation ability of the MMPDE moving mesh strategy.

Recall that the jump in the solution simulates object edges in a real image and an ideal
segmentation should sharpen this jump while smoothing out the regions divided by the
jump. The first row of Fig. 1 shows the evolution of u and φ for ε = 0.1. One can see that
the jump is not sharpened and u is smoothed out on the whole domain as time evolves.
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Figure 1: Example 4.1. The computed solution uh and φh at three time instants for various values of ε.
No scaling has been used on g and u.

This indicates that the Ambrosio-Tortorelli functional with ε = 0.1 does not provide a good
segmentation. The result is shown for a smaller ε = 0.01 on the second row of the figure.
As time evolves, the jump is getting sharper and u becomes piecewise constant essentially,
an indication for good image segmentation. However, when ε continues to decrease, as
shown on the last row (ε = 10−5) of Fig. 1, the jump disappears for the time being, φ
approaches to 1, and u becomes smooth over the whole domain. This implies that the
Ambrosio-Tortorelli functional loses its segmentation ability for very small ε, consistent
with the analysis in Section 2.

It is interesting to see the transient behavior of φ. From the simplified equation (2.8),
we have φt = −α|∇u|2φ initially due to the initial condition φ = 1. Thus, we expect
that φ decreases initially and this decrease is more significant in the regions where ∇u is
larger. This is confirmed in the numerical results; see Fig. 1(a,d,g). As time evolves, the
system reaches an equilibrium state and φ is approximately given by (2.9). When ε is not
too small and ∇u is sufficiently large at some places, then φ can become close to zero at
the places and this yields a good segmentation; see the second row of Fig. 1. However,
when ε is too small, φ will essentially become 1 everywhere and the functional loses its
segmentation ability (cf. the third row of Fig. 1).
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Example 4.2 (2D hyperbolic tangent). In this example, we choose

g =0.49
h

2+ tanh(50(
p

(x − 0.5)2+ (y − 0.5)2− 0.05))

− tanh(50(
p

(x − 0.5)2+ (y − 0.5)2+ 0.05))
i

, (x , y) ∈ (0,1)× (0,1),

which models a circle, being close to 0 on the circle and approximately 1 elsewhere. For the
reasons to be explained in Section 5, u and g in the IBVP (2.1) are scaled in this example
according to (5.4).

We take

u0 = g, φ0 = 1, N = 2× 50× 50,

α = 10−3, γ= 10−5, β = 10−2, kε = 10−10.
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Figure 2: Example 4.2. Evolution of the solution for ε = 10−3. The first, second, and third rows show
the evolution of φ, the moving mesh, and the image of u, respectively.
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Figure 3: Example 4.2. Evolution of the solution for ε = 10−7. The first, second, and third rows show
the evolution of φ, the moving mesh, and the image of u, respectively.

The numerical results obtained with ε = 10−3 and ε = 10−7 are shown in Figs. 2 and 3,
respectively. They show that the mesh concentrates around the jump (the circle) very well,
which, once again, demonstrates the mesh adaptation ability of the MMPDE moving mesh
method.

Fig. 2 shows that the Ambrosio-Tortorelli functional with ε = 10−3 makes a good seg-
mentation. The evolution of φ is given on the first row, and φ deceases rapidly to 0 along
the circle at t = 7. The image of the circle is clear as shown on the third row. However,
the situation changes when a smaller ε is used. As shown in Fig. 3 with ε = 10−7, the
segmentation ability disappears. As t increases, φ becomes close to 1 in the whole domain,
failing to identify the circle. In the same time, the image of u blurs out. As for Example 4.1,
the above observation is consistent with the analysis in Section 2, that is, when g is con-
tinuous, the segmentation ability of the Ambrosio-Tortorelli functional varies for small but
finite ε and disappears as ε→ 0.
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5. Selection of the regularization parameter and scaling of g and u

5.1. Selection of the regularization parameter

From the analysis in Section 2 and the examples in the previous section, we have seen
that it is crucial to choose a proper ε for the Ambrosio-Tortorelli functional to produce a
good segmentation when g is continuous. To see how to choose ε properly, we recall that
φ is given in (2.7) for small ε. We want to have φ = 0 on object edges. Taking φ = 0 in
(2.7) we get

ε=
β

2α|∇u(0)|2
, (5.1)

where u(0) is the solution of (2.6) subject to a homogeneous Neumann boundary condition.
Since u(0) is completely determined by its initial value g and an objective of the Ambrosio-
Tortorelli functional is to make u (and thus u(0)) close to g, it is reasonable to replace u(0)

by g in the above formula, i.e.,

ε=
β

2α|∇g|2
. (5.2)

Since |∇g| varies from place to place and ε is a constant, in our computation we replace
the former with (|∇g|max+ |∇g|min)/2 and have

ε=
β

2α
�

(|∇g|max+ |∇g|min)/2
�2 . (5.3)

Notice that we could have replaced |∇g| by |∇g|max . In this case we have

ε=
β

2α|∇g|2max

.

Then from (2.7) we have

φ = 1−
|∇u(0)|2

|∇g|2max

+ O (ε2).

This implies that the boundaries (where φ ≈ 0) can be formed at places where |∇u(0)| ≈
|∇g|max . But this can hardly happen since u(0) is much smoother than g in general and its
gradient will not reach the maximal gradient of g. On the other hand, for the choice (5.3)
we have

φ = 1−
|∇u(0)|2

�

(|∇g|max+ |∇g|min)/2
�2 + O (ε

2).

Then, the boundaries will be formed at places where |∇u(0)| is greater than or close to
(|∇g|max+ |∇g|min)/2, which is more likely to happen.

To demonstrate this choice of ε, we apply it to Example 4.1 and obtain ε= 0.008. The
numerical result obtained with the same initial condition and parameters (other than ε)
is shown in Fig. 4. One can see that this value of ε leads to a good segmentation of the
image.
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Figure 4: Example 4.1. The evolution of u and φ for ε = 0.008 (determined by (5.3)). No scaling has
been used on u and g.

It is noted that the choice for ε given in (5.3) depends on the gradient of the image
datum g that can be sensitive to noise present in the image. Although the choice seems
to work for the tested images with noise (see Section 5.3), it may be better to use a regu-
larized version of g in practice. For example, a five-step Gaussian filter with radius 1 has
been applied to g in (5.3). A comparison with and without regularization is demonstrated
in Fig. 16. The results are very comparable for this example.

5.2. Scaling of g and u

Our experience shows that (5.3) works well when the difference in ∇g between the
objects and their edges is sufficiently large. However, when the change of ∇g is small, the
Ambrosio-Tortorelli functional can still fail to produce a segmentation of good quality. To
avoid this difficulty, we propose to scale u and g in (2.1), i.e., u→ Lu and g → Lg for some
parameter L ≥ 1. This will make the change of ∇g from place to place more significant.
Moreover, the first equation of (2.1) will stay invariant. The second equation becomes

φt = 2βε∆φ− L2α|∇u|2φ +
β

2ε
(1−φ),

where the second term on the right-hand side is made larger, helping decrease φ. We
choose

L =max

�

1,
|∇g|cr

|∇g|max

�

, (5.4)

where |∇g|cr is a parameter. Generally speaking, the larger |∇g|cr (and L) is, the more
likely the segmentation works, but this will also make (2.1) harder to integrate. We take
|∇g|cr = 3× 103 (by trial and error) in our computation, unless stated otherwise.

To demonstrate the effects of the scaling, we recompute Example 4.1 with u0 = g =

0.5(1+ tanh(20(x−0.5))), which has a less steep jump at x = 0.5 than the function (4.1).
Results with and without scaling are shown in Fig. 5. It can be seen that scaling improves
the segmentation ability of the Ambrosio-Tortorelli functional.
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Figure 5: Example 4.1 with g = 0.5(1+ tanh(20(x − 0.5))) and u0 = g. ε = 0.05, which is chosen as in
(5.3) and other parameters are the same as in Example 4.1. No scaling is used for the top row while
the scaling with (5.4) for u and g is used for the bottom row.

(a) t = 0.005,ε= 10−5 (b) t = 0.16,ε= 10−5 (c) t = 0.6,ε= 10−5

(d) t = 0.005,ε =

0.00044
(e) t = 0.16,ε =

0.00044
(f) t = 0.6,ε= 0.00044

Figure 6: A comparison of the image segmentation with different ε values. The value of ε in (d,e,f) is
obtained using (5.3).

5.3. Segmentation for real images

To further demonstrate the effects of the selection strategy (5.3) and the scaling (5.4)
we present results obtained for four real images. The results are shown in Figs. 6, 8, 10,
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Figure 7: The meshes corresponding to Fig. 6. The value of ε in (d,e,f) is obtained using (5.3).

(a) t = 6 × 10−6, ε =
10−6

(b) t = 0.15, ε = 10−6 (c) t = 0.3, ε = 10−6

(d) t = 6 × 10−6, ε =
0.0004

(e) t = 0.15, ε= 0.0004 (f) t = 0.3, ε = 0.0004

Figure 8: Evolution of the image. The value of ε in (d,e,f) is obtained using (5.3).

and 12 and the corresponding meshes are shown in Figs. 7, 9, 11, and 13, respectively. The
original resolution (the number of pixels) for these four images are 256× 256, 512× 512,
756 × 800, and 480 × 640, respetively. In these four experiments, N = 2 × 70 × 70,
α= 10−3, γ = 10−5, β = 10−2, and kε = 10−10 are used. The parameters are chosen (with
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Figure 9: The meshes corresponding to Fig. 8. The value of ε in (d,e,f) is obtained using (5.3).

(a) t = 0.002, ε= 10−7 (b) t = 0.008, ε = 10−7 (c) t = 0.2, ε = 10−7

(d) t = 0.002, ε =

0.00016
(e) t = 0.008, ε =

0.00016
(f) t = 0.2, ε = 0.00016

Figure 10: Evolution of the image. The value of ε in (d,e,f) is obtained using (5.3).

some adjustment) according to [13]. A random field in the range (−0.25,0.25) is added
to g as well as u0. One can observe that the selection strategy (5.3) for the regularization
parameter significantly improves segmentation for all cases.

We now consider the efficiency of the adaptive moving mesh method. This issue has
been studied extensively for test examples with exact solutions (e.g., see [22]) where the
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(c) t = 0.2, ε= 10−7
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(f) t = 0.2, ε= 0.00016

Figure 11: The meshes corresponding to Fig. 10. The value of ε in (d,e,f) is obtained using (5.3).

(a) t = 0.00013, ε =
10−7

(b) t = 0.08, ε = 10−7 (c) t = 0.3, ε= 10−7

(d) t = 0.00013, ε =
0.00025

(e) t = 0.08, ε= 0.00025 (f) t = 0.3, ε= 0.00025

Figure 12: Evolution of the image. The value of ε in (d,e,f) is obtained using (5.3).

error is plotted as a function of CPU time. In the current situation, the exact solution is
unavailable and the error cannot be computed. Nevertheless, we can have a rough idea by
comparing the segmentation quality. Two sets of results are shown in Fig. 14, one obtained
with a fixed mesh and the other obtained with an adaptive mesh. The same parameters,
N = 2× 70× 70, α = 10−3, γ = 10−5, β = 10−2, kε = 10−10 and ε = 0.00044 are used
in both. One can see that the moving mesh method leads to much better segmentation
quality. The CPU time (on a linux machine with a single AMD Opteron 6386 SE 2.8 GHz
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(b) t = 0.08, ε = 10−7
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(c) t = 0.3, ε= 10−7
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(d) t = 0.00013, ε =
0.00025
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(e) t = 0.08, ε =
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(f) t = 0.3, ε= 0.00025

Figure 13: The meshes corresponding to Fig. 12. The value of ε in (d,e,f) is obtained using (5.3).

(a) t = 0.005, ε =

0.00044
(b) t = 0.16, ε =

0.00044
(c) t = 0.6, ε= 0.00044

(d) t = 0.005, ε =

0.00044
(e) t = 0.16, ε =

0.00044
(f) t = 0.6, ε = 0.00044

Figure 14: Comparison of image segmentation with fixed and adaptive meshes. (a,b,c): fixed mesh of
N = 2× 70× 70; (d,e,f): adaptive mesh of N = 2× 70× 70.

processor, coded in Matlab) is 12,849 seconds and 12,498 seconds for the moving and
fixed mesh cases, respectively. Most of CPU time has been spent on the computation of
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(a) t = 0.005, ε =

0.00044
(b) t = 0.16, ε =

0.00044
(c) t = 0.6, ε= 0.00044

(d) t = 0.005, ε =

0.00044
(e) t = 0.16, ε =

0.00044
(f) t = 0.6, ε= 0.00044

Figure 15: Comparison of image segmentation with fixed and adaptive meshes. (a,b,c): fixed mesh of
N = 2× 150× 150; (d,e,f): adaptive mesh of N = 2× 70× 70.

the gradient flow equation (2.1). The segmentation quality improves as the fixed mesh is
refined. Fig. 15 shows that a finer fixed mesh of N = 2× 150× 150 gives almost the same
level of segmentation quality as an adaptive mesh of N = 2×70×70. But the former takes
69,263 seconds, about six times of that used for the latter.

6. Conclusions

The Mumford-Shah functional has been widely used for image segmentation. Its Ambr-
osio-Tortorelli Approximation has been known for its relative ease in implementation, seg-
mentation ability, and Γ-convergence to the Mumford-Shah functional as the regularization
parameter ε goes to zero. The segmentation ability is based on the assumption that the
input image g is discontinuous across the boundaries between different objects, and this
discontinuity must be maintained in the limit of ε → 0 during numerical computation to
retain the Γ-convergence and the segmentation ability for infinitesimal ε (e.g., see [4]).
However, the maintenance of discontinuity in g is often forgotten and g is treated implicit-
ly as a continuous function in actual computation. As a consequence, it has been observed
that the segmentation ability of the Ambrosio-Tortorelli functional varies significantly with
different values of ε and the functional can even fail to Γ-converge to the original func-
tional for some cases. Moreover, there exist very few published numerical studies on the
behavior of the functional as ε→ 0.
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(a) t = 0.005, ε =

0.00044
(b) t = 0.16, ε =

0.00044
(c) t = 0.6, ε= 0.00044

(d) t = 0.005, ε =

0.00048
(e) t = 0.16, ε =

0.00048
(f) t = 0.16, ε =

0.00048

Figure 16: A comparison of the image segmentation with ε chosen by g with and without regularization.
(a,b,c): without regularization; (d,e,f): a five-step Gaussian filter has been applied to g in (5.3).

We have presented in Section 2 an asymptotic analysis on the gradient flow equation of
the Ambrosio-Tortorelli functional as ε→ 0 for continuous g. The analysis shows that the
functional can have different segmentation behavior for small but finite ε and eventually
loses its segmentation ability for infinitesimal ε. This is consistent with the existing ob-
servations in the literature and the numerical examples in one and two spatial dimensions
presented in Section 4. Based on the analysis, we have proposed a selection strategy for ε
and a scaling procedure for u and g in Section 5. Numerical results with real images show
that they lead to a good segmentation of the Ambrosio-Tortorelli functional.

Finally, we recall that the Ambrosio-Tortorelli functional is a special example of phase-
field modeling for image segmentation. We hope that the analysis and the selection strat-
egy for the regularization parameter presented in this work can also apply to other phase-
field models. We are specially interested in the phase-field modeling of brittle fracture
(e.g., see [6,14,27]). Investigations in this direction are currently underway.
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