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Abstract. There have been great efforts on the development of higher-order numerical
schemes for compressible Euler equations in recent decades. The traditional test cases
proposed thirty years ago mostly target on the strong shock interactions, which may not
be adequate enough for evaluating the performance of current higher-order schemes. In
order to set up a higher standard for the development of new algorithms, in this paper
we present a few benchmark cases with severe and complicated wave structures and
interactions, which can be used to clearly distinguish different kinds of higher-order
schemes. All tests are selected so that the numerical settings are very simple and any
higher order scheme can be straightforwardly applied to these cases. The examples
include highly oscillatory solutions and the large density ratio problem in one dimen-
sional case. In two dimensions, the cases include hurricane-like solutions; interactions
of planar contact discontinuities with asymptotic large Mach number (the composite of
entropy wave and vortex sheets); interaction of planar rarefaction waves with transi-
tion from continuous flows to the presence of shocks; and other types of interactions of
two-dimensional planar waves. To get good performance on all these cases may push al-
gorithm developer to seek for new methodology in the design of higher-order schemes,
and improve the robustness and accuracy of higher-order schemes to a new level of s-
tandard. In order to give reference solutions, the fourth-order gas-kinetic scheme (GKS)
will be used to all these benchmark cases, even though the GKS solutions may not be
very accurate in some cases. The main purpose of this paper is to recommend other CFD
researchers to try these cases as well, and promote further development of higher-order
schemes.
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1. Introduction

In past decades, there have been tremendous efforts on designing high-order accurate
numerical schemes for compressible flows and great success has been achieved. The devel-
opments of high-order accurate numerical schemes were pioneered by Lax and Wendrof-
f [22], and extended into the version of high resolution methods by Kolgan [18], Boris [7],
van Leer [44], Harten [13] et al, and other higher order versions, such as Essentially
Non-Oscillatory (ENO) [16, 41], Weighted Essentially Non-Oscillatory (WENO) [17, 31],
Discontinuous Galerkin (DG) [10,12,35] methods etc.

In the past decades, the evaluation of the performance of numerical scheme was mostly
based on the test cases with strong shocks for capturing sharp shock transition, such as the
blast wave interaction, the forward step-facing flows, and the double Mach reflection [45].
Now it is not a problem at all for shock capturing scheme to get stable sharp shock tran-
sition. However, with the further development of higher order numerical methods and
practical demands (such as turbulent flow simulations), more challenging test problems
for capturing multiple wave structure are expected to be used. For testing higher-order
schemes, the setting of these cases should be sufficiently simple and easy for coding, and
avoid the possible pollution from the boundary condition and curvilinear meshes. To intro-
duce a few tests which can be truthfully used to evaluate the performance of higher-order
scheme is the motivation of the current paper. Our selected examples include the following
ones: one-dimensional cases, two-dimensional Riemann problems, and the conservation
law with source terms. For the one-dimensional problems, the first case is a highly oscil-
latory shock-turbulence interaction problem, which is an extension of Shu-Osher problem
by Titarev and Toro [43] with much more severe oscillations, and the second one is a large
density ratio problem with a very strong rarefaction wave in the solution [42], which can
be used to test the robustness and accuracy in capturing strong expansion waves. For the
two-dimensional cases, four group wave interactions are tested. (i) Hurricane-like solu-
tions [27,48], which are highly nontrivial two-dimensional time-dependent solutions with
one-point vacuum in the center and rotational velocity field. It is proposed to test the
preservation of positivity and symmetry of the numerical scheme. (ii) The interaction of
planar contact discontinuities for different Mach numbers. The multidimensional contact
discontinuities are the composite of entropy waves and vortex sheets. The simulation of
these cases is associated with difficulties for capturing the strong shear effects. Since at
the large Mach number limits these cases have explicit solutions [27, 40], they are pro-
posed here to check the ability of higher-order schemes in capturing wave structures of
various scales and the asymptotic property. (iii) Interaction of planar rarefaction waves
with the transition from continuous fluid flows to the presence of shocks. (iv) Further
interaction of planar shocks with Mach reflection phenomenon. These two-dimensional
problems fall into the category of two-dimensional Riemann problems proposed in [49].
The two-dimensional Riemann problems reveal almost all substantial wave patterns of
shock reflections, spiral formations, vortex-shock interactions, and so on, through simple
classification of initial data. The rich wave configurations conjectured in [49] have been
confirmed numerically by several subsequent works [14, 20, 27, 37]. Since the formula-
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tions of these problems are extremely simple, without complicated numerical boundary
treatment, they are suitable as benchmark tests. The case for the conservation law with
source term is also proposed.

In order to provide reference solutions for all these test cases. A gas-kinetic scheme will
be used to calculate the solutions in this paper. Recently, based on the time-dependent flux
function of the generalized Riemann problem (GRP) solver [3–5], a two-stage fourth-order
time-accurate discretization was developed for Lax-Wendroff type flow solvers, particularly
applied for the hyperbolic conservation laws [26]. The reason for the success of a two-stage
L-W type time stepping method in achieving a fourth-order temporal accuracy is solely due
to the use of both flux function and its temporal derivative. In terms of the gas evolution
model, the gas-kinetic scheme provides a temporal accurate flux function as well, even
though it depends on time through a much more complicated relaxation process from the
kinetic to the hydrodynamic scale physics than the time-dependent flux function of GRP.
Based on this time-stepping method and the second-order gas-kinetic solver [46, 47], a
fourth-order gas-kinetic scheme was constructed for the Euler and Navier-Stokes equations
[34]. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver
[30,32], the fourth-order scheme not only reduces the complexity of the flux function, but
also improves the accuracy of the scheme, even though the third-order and fourth-order
schemes take similar computation cost. The robustness of the fourth-order gas-kinetic
scheme is as good as the second-order one. Numerical tests show that the fourth-order
scheme not only has the expected order of accuracy for the smooth flows, but also has
favorable shock capturing property for the discontinuous solutions. The fourth-order GKS
will not definitely provide the most accurate solutions for all these tests. The reason for
choosing GKS is that this scheme can at least provide reasonable solutions whenever the
analytic or asymptotic results are available. Many existing higher-order schemes may have
difficulties to pass all these cases and provide accurate solutions, especially for the schemes
with over-simplified flux function [42].

This paper is organized as follows. In Section 2, we will briefly review the fourth-order
gas-kinetic scheme. In Section 3, we present the benchmark test cases and provide the
GKS reference solutions. The final conclusion is made in the last section.

2. The review of two-stage fourth-order gas-kinetic scheme

In this section, we will briefly review our recently developed two-stage fourth-order
gas-kinetic scheme. This scheme is developed in the framework of finite volume scheme,
and it contains three standard ingredients: spatial data reconstruction, two-stage time
stepping discretization, and second-order gas-kinetic flux function.

2.1. Spatial reconstruction

The spatial reconstruction for the gas-kinetic scheme contains two parts, i.e., initial
data reconstruction and reconstruction for equilibrium. In this paper, the fifth-order WENO
method [17] is used for the initial data reconstruction. Assume that W are the macroscopic
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flow variables that need to be reconstructed. Wi are the cell averaged values, and W r
i ,W l

i

are the two values obtained by the reconstruction at two ends of the i-th cell. The fifth-
order WENO reconstruction is given as follows
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and wk, ewk, k = 0,1,2 are the nonlinear weights. The most widely used is the WENO-JS
non-linear weights [17], which can be written as follows
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and βk is the smooth indicator, and the basic idea for its construction can be found in
[31]. In order to achieve a better performance of the WENO scheme near smooth extrema,
WENO-Z [1] and WENO-Z+ [2] reconstruction were developed. The only difference is the
nonlinear weights. The nonlinear weights for the WENO-Z method is written as

wZ
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k
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and the nonlinear weights for the WENO-Z+ method is
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where βk is the same local smooth indicator as in [17], δ = |β0 − β2| is used for the fifth-
order reconstruction, and λ is a parameter for fine-tuning the size of the weight of less
smooth stencils. In the numerical tests, without special statement, WENO-JS method will
be used for initial data reconstruction.

After the initial date reconstruction, the reconstruction of equilibrium part is presented.
For the cell interface x i+1/2, the reconstructed variables at both sides of the cell interface
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are denoted as Wl ,Wr . According to the compatibility condition, which will be given lat-
er, the macroscopic variables at the cell interface is obtained and denoted as W0. The
conservative variables around the cell interface can be expanded as

W (x) =W0 + S1(x − x∗) +
1

2
S2(x − x∗)2+

1

6
S3(x − x∗)3 +

1

24
S4(x − x∗)4.

With the following conditions,

∫
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the derivatives are given by
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4
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�
.

2.2. Two-stage fourth-order temporal discretization

The two-stage fourth-order temporal discretization was developed for Lax-Wendroff
flow solvers, and was originally applied for the generalized Riemann problem solver (GR-
P) [26] for hyperbolic equations. In [9, 38], multi-stage multi-derivative time stepping
methods were proposed and developed as well under different framework of flux evalua-
tion. Consider the following time-dependent equation

∂w

∂ t
=L (w), (2.1)

with the initial condition at tn, i.e.,

w(t = tn) =wn, (2.2)

where L is an operator for spatial derivative of flux. The time derivatives are obtained
using the Cauchy-Kovalevskaya method,

∂wn
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=L (wn),

∂
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∂

∂w
L (wn)L (wn).

Introducing an intermediate state at t∗ = tn +∆t/2,
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1

2
∆tL (wn) +

1

8
∆t2 ∂
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the corresponding time derivatives are obtained as well for the intermediate stage state,

∂w∗
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=L (w∗), ∂

∂ t
L (w∗) = ∂

∂w
L (w∗) · L (w∗).
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Then, a fourth-order temporal accuracy solution of w(t) at t = tn+∆t can be provided by
the following equation

wn+1 =wn +∆tL (wn) +
1

6
∆t2

�
∂

∂ t
L (wn) + 2

∂

∂ t
L (w∗)
�

. (2.4)

The details of this analysis can be found in [26]. Thus, a fourth-order temporal accuracy
can be achieved by the two-stage discretization Eq. (2.3) and Eq. (2.4).

Consider the following conservation laws

∂w

∂ t
+
∂ f(w)

∂ x
= 0.

The semi-discrete form of a finite volume scheme can be written as

∂wi

∂ t
=Li(w) = −

1

∆x
(fi+1/2 − fi−1/2),

where wi are the cell averaged conservative variables, fi+1/2 are the fluxes at the cell
interface x = x i+1/2, and ∆x is the cell size. With the temporal derivatives of the flux, the
two-stage fourth-order scheme can be developed [26, 34]. Similarly, for the conservation
laws with source terms

∂w

∂ t
+
∂ f(w)

∂ x
= S(w),

the corresponding operator can be denoted as

Li(w) = −
1

∆x
(fi+1/2 − fi−1/2) + S(wi). (2.5)

The two-stage fourth-order temporal discretization can be directly extended for conserva-
tion laws with source terms.

2.3. Second-order gas-kinetic flux solver

The two-dimensional BGK equation [6,8] can be written as

ft + u · ∇ f =
g − f

τ
, (2.6)

where f is the gas distribution function, g is the corresponding equilibrium state, and τ is
the collision time. The collision term satisfies the compatibility condition

∫
g − f

τ
ψdΞ = 0, (2.7)

where ψ =
�
1, u, v,

1

2
(u2 + v2 + ξ2)
�
, dΞ = dudvdξ1 · · ·dξK , K is number of internal

freedom, i.e. K = (4− 2γ)/(γ− 1) for two-dimensional flows, and γ is the specific heat
ratio.
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To update the flow variables in the finite volume framework, the integral solution of
BGK equation Eq. (2.6) is used to construct the gas distribution function at a cell interface,
which can be written as

f (x i+1/2, t,u, v,ξ)

=
1

τ

∫ t

0

g(x ′, y ′, t′,u, v,ξ)e−(t−t ′)/τd t′ + e−t/τ f0(−ut, y − v t,u, v,ξ), (2.8)

where x i+1/2 = 0 is the location of the cell interface, x i+1/2 = x ′ + u(t − t′) and y =

y ′ + v(t − t′) are the trajectory of particles, f0 is the initial gas distribution function, and
g is the corresponding equilibrium state. The time dependent integral solution at the cell
interface x i+1/2 can be expressed as

f (x i+1/2, t,u, v,ξ)

=(1− e−t/τ)g0 +
�
(t +τ)e−t/τ −τ��a1u+ a2v

�
g0+ (t −τ+τe−t/τ)Āg0

+ e−t/τgr[1− (τ+ t)(a1r u+ a2r v)−τAr)]H(u)

+ e−t/τgl[1− (τ+ t)(a1lu+ a2l v)−τAl)](1−H(u)). (2.9)

Based on the spatial reconstruction of macroscopic flow variables, which is presented be-
fore, the conservative variables Wl and Wr on the left and right hand sides of a cell in-
terface, and the corresponding equilibrium states gl and gr , can be determined. The con-
servative variable W0 and the equilibrium state g0 at the cell interface can be determined
according to the compatibility condition Eq. (2.7) as follows

∫
ψg0dΞ =W0 =

∫

u>0

ψgldΞ+

∫

u<0

ψgr dΞ.

The coefficients related to the spatial derivatives and time derivative a1k, a2k, Ak, k = l, r

and a1, a2, A in gas distribution function Eq. (2.9) can be determined according to the
spatial derivatives and compatibility condition. More details of the gas-kinetic scheme can
be found in [46].

As mentioned in the section before, in order to utilize the two-stage temporal discretiza-
tion, the temporal derivatives of the flux function need to be determined. While in order
to obtain the temporal derivatives at tn and t∗ = tn +∆t/2 with the correct physics, the
flux function should be approximated as a linear function of time within the time interval.
Let’s first introduce the following notation,

Fi+1/2(W
n,δ) =

∫ tn+δ

tn

Fi+1/2(W
n, t)d t =

∫ tn+δ

tn

∫
uψ f (x i+1/2, t,u, v,ξ)dudξd t.

In the time interval [tn, tn +∆t], the flux is expanded as the following linear form

Fi+1/2(W
n, t) = F n

i+1/2 + ∂t F n
i+1/2(t − tn). (2.10)
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The coefficients F n
j+1/2 and ∂t F

n
j+1/2 can be fully determined as follows

Fi+1/2(W
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Similarly, Fi+1/2(W
∗, t∗), ∂t Fi+1/2(W

∗, t∗) for the intermediate stage tn + ∆t/2 can be
constructed as well.

Thus, we have completed the review of three building blocks of fourth-order gas-kinetic
scheme, i.e., spatial data reconstruction, two-stage temporal discretization, and second-
order gas-kinetic flux solver. More details about the implementation of the fourth-order
gas-kinetic scheme can be found in [34].

3. Benchmark test cases

In this section, we present the benchmark test cases for the compressible Euler equa-
tions. The two-dimensional Euler equations are

∂

∂ t




ρ

ρU

ρV

ρE


+
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ρU
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ρUV
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∂ y




ρV

ρUV

ρV 2 + p

V (ρE+ p)


 = 0, (3.1)

where ρ is the density, U , V are velocity components, p is the pressure, and

ρE =
1

2
ρ(U2+ V 2) +

p

γ− 1
.

In the computation, the collision time τ in gas-kinetic scheme for the inviscid flows takes

τ = ǫ∆t + C

����
pl − pr

pl + pr

����∆t,

where ǫ = 0.05, C = 1, pl and pr denote the pressure on the left and right sides of the
cell interface. The reason for including artificial dissipation through the additional term in
the particle collision time is to enlarge the kinetic scale physics in the discontinuous region
for the construction of a numerical shock structure through the particle free transport and
inadequate particle collision for keeping the non-equilibrium property in the shock region.
In all simulations, the Courant number C F L = 0.4. Without special statement, the specific
heat ratio γ= 1.4.

In order to set up a new standard to guide the further development of higher-order
schemes, in this paper we suggest a few benchmark cases in one- and two-dimensions for
the compressible Euler solutions as well. The tested cases are listed as follows,

1. One-dimensional problems
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(a) Titarev-Toro’s highly oscillatory shock-entropy wave interaction;

(b) Large density ratio problem with a very strong rarefaction wave.

2. Two-dimensional Riemann problems

(a) Hurrican-like solutions with one-point vacuum and rotational velocity field;

(b) Interaction of planar contact discontinuities, with the involvement of entropy
wave and vortex sheets;

(c) Interaction of planar rarefaction waves with the transition from continuous flow
to the presence of shock;

(d) Interaction of planar (oblique) shocks.

3. Conservation law with source terms

(a) Rayleigh-Taylor instability.

3.1. One-dimensional problems

The first one-dimensional problem is the extension of the Shu-Osher problem given by
Titarev and Toro [43] to test a severely oscillatory wave interacting with shock. It aims
to test the ability of high-order numerical scheme to capture the extremely high frequency
waves. The initial condition for this case is given as follows,

(ρ, U , p) =

¨
(1.515695, 0.523346, 1.805), −5< x ≤ −4.5,
(1+ 0.1 sin(20πx), 0, 1), −4.5< x < 5.

The computational domain is [−5,5] and 1000 uniform cells are used, and the density
distributions at t = 5 are presented. WENO-JS, WENO-Z and WENO-Z+ methods are used
to test the performance of different nonlinear weights in the WENO reconstruction. The
density distribution and local enlargement of Titarev-Toro problem with different weights
are given in Fig. 1, where λ = ∆x3/4 in WENO-Z+ methods. Similar to the results in [2],
with a proper choice of the parameter λ, WENO-Z+ method performs much better than
WENO-JS and WENO-Z methods. In order to check the role of λ in WENO-Z+ method,
the density distributions are presented in Fig. 2, for the cases with λ = ∆x1/2,∆x3/4 and
∆x . It shows that the numerical performance is very sensitive to the choice of λ, which is
also observed in [2]. However, the current scheme with GKS formulation tends to provide
better results than those in [2] in all cases with λ = ∆x1/2,∆x3/4 and ∆x due to the
self-adjusting (or time-dependent) dynamics in the GKS flux function.

The second example is the large density ratio problem with a very strong rarefaction
wave [42]. It is proposed to test the ability of a scheme for capturing strong waves. The
initial data

(ρ, U , p) =

¨
(10000, 0, 10000), x < 0.3,
(1, 0, 1), 0.3< x .
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Figure 1: The density distribution and local enlargement of Titarev-Toro problem with WENO-JS,
WENO-Z and WENO-Z+ weights at t = 5, where λ=∆x3/4 in WENO-Z+ methods.
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Figure 2: The density distribution and local enlargement of Titarev-Toro problem at t = 5 for WENO-Z+
weights with λ=∆x1/2,∆x3/4 and ∆x .

The computational domain is [0,1] and the non-reflective boundary condition is used at
both ends. It is a Sod-type problem, and the solution consists of a very strong rarefaction
wave with the density variation from 10000 to 100, a contact discontinuity jumping from
100 to 8, and a shock wave jumping from 1 to 8. If uniform grid points are used, the density
jump among neighboring cells inside the rarefaction wave is about 100 times the density
jump in the shock layer. Hence the strong rarefaction wave is in a highly non-equilibrium
state. It has been verified in [42] that many high order numerical methods have to use a
very refined grid points in order to capture the rarefaction wave, the location of the shock,
and the contact discontinuity properly. In this case, we start with the exact solution at time
t = 1.2 as initial data, and the output time for the solution is t = 12, where both 100 and
200 uniform mesh points are used. The density and velocity distributions are shown in
Fig. 3. If we start with the initial data at t = 0, i.e., a single jump at x = 0.3, the numerical
solutions will not be as accurate as the above ones with the same grid points, although they
are still acceptable. However, as the rarefaction wave is not so strong, the scheme works
well, which is verified through another example with the density and pressure jumps from
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Figure 3: Large density ratio problem with density variation from 10000 to 1 starting from t = 1.2.
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Figure 4: Large density ratio problem with density variation from 1000 to 1 starting from t = 0.

10000 to 1000. The density and velocity distributions are shown in Fig. 4. The GRP
simulation works better for such a case because the exact GRP solver is used for the Euler
equations [26], especially at the initial time for the solution starting from a singular jump.
This example shows that the flux is extremely important in capturing strong expansion
waves.

3.2. Two-dimensional Riemann problems

In this subsection, five groups of two-dimensional benchmark problems are presented.

3.2.1. Hurricane-like solutions

The first group of two-dimensional time-dependent solution is the hurricane-like flow evo-
lution, whose solution has one-point vacuum in the center with rotational velocity field.
The initial condition is given as

(ρ, U , V, p) = (ρ0, v0 sinθ , −v0 cosθ , Aρ
γ
0),
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Figure 5: Hurricane-like solution: the critical case.

where θ = arctan(y/x), A is the initial entropy, γ = 2. In this case, the initial velocity
distribution has a nontrivial transversal component, which makes the flow rotational. The
solutions are classified into three types [48] according to the initial Mach number M0 =

|v0|/c0, where c0 is the sound speed.

1. Critical rotation with M0 =
p

2. For this case, we have an exact solution with
explicit formula. This solution consists of two parts: a far field solution and a near-field

solution. The former far field solution is defined for r ≥ 2t
p

p′(ρ0), r =
p

x2+ y2,




U(x , y, t) = (2tp′0 cosθ +
p

2p′0
p

r2− 2t2p′0 sinθ)/r,

V (x , y, t) = (2tp′0 sinθ −
p

2p′0
p

r2 − 2t2p′0 cosθ)/r,

ρ(x , y, t) = ρ0,

(3.2)

and the near-field solution is defined for r < 2t
p

p′(ρ0)

U(x , y, t) =
x + y

2t
, V (x , y, t) =

−x + y

2t
, ρ(x , y, t) =

r2

8At2
.
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The curl of the velocity in the near-field is

curl(U , V ) = Vx − Uy = −
1

2t
6= 0,

and the solution has one-point vacuum at the origin r = 0. This is a typical hurricane-like
solution that behaves highly singular, particularly near the origin r = 0.

There are two issues here challenging the numerical schemes: one is the presence
of the vacuum state which examines whether a high order scheme can keep the posi-
tivity preserving property; the other is the rotational velocity field for testing whether
a numerical scheme can preserve the symmetry. In our computation we take the data
A = 25, v0 = 10, ρ0 = 1. The computational domain is [−1,1]× [−1,1], and the mesh
size is ∆x =∆y = 1/100. The boundary condition is given by the far field solution Eq.
(3.2). Numerical results are presented in Fig. 5 at t = 0.045 with the distribution of density
and velocity field. The positivity and symmetry are preserved well in the current scheme.

2. High-speed rotation with M0 >
p

2. For this case, the density goes faster to the
vacuum and the fluid rotates severely. In the computation A = 25, v0 = 12.5, ρ0 = 1.
For this case, no exact solution can be imposed on the boundary. In the computation,
the computational domain is [−2,2]× [−2,2], the mesh size is ∆x = ∆y = 1/100. Non-
reflection boundary is given on the boundaries. The results in the domain [−1,1]×[−1,1],
which is not affected by the boundary condition, is given in Fig. 6 at t = 0.045. Because
of its high rotating speed, this case is more tough than the first one, and it can be used to
validate the robustness of higher-order schemes.

3. Low-speed rotation with M0 <
p

2. This case is milder than the other cases above.
There is no vacuum in the solution, but it is still rotational with a low speed. In the
computation A = 25, v0 = 7.5, ρ0 = 1. Similarly, the non-reflection boundary is given
on the boundaries. The results in the domain [−1,1]× [−1,1] is presented in Fig. 6 at
t = 0.045. The symmetry of the flow structure needs to be preserved.

3.2.2. Large Mach number limit

The second group is about the interactions of planar contact discontinuities, whose solu-
tions in the large Mach number limit are singular and contain either vacuum or singular
shocks or delta-shocks [27,28]. Two typical cases related to the large Mach number limit
are provided in this group. As is well-known, the compressible fluid flows become incom-
pressible at the low Mach number limit [33]. On the other hand, the large Mach number
limit leads to the pressureless model [19,28]

∂

∂ t




ρ

ρU

ρV

ρE


+

∂

∂ x




ρU

ρU2

ρUV

ρEU


+

∂

∂ y




ρV

ρUV

ρV 2

ρEV


 = 0. (3.3)

This system can be also regarded as the zero moment closure of the Boltzmann-type equa-
tions [36] to describe the single transport effect of mass, momentum. The last equation



724 L. Pan, J. Q. Li and K. Xu

x

de
ns

ity

-0.5 0 0.5

0.2

0.4

0.6

0.8

1

low speed rotation
critical speed rotation
high speed rotation

x

pr
es

su
re

-0.5 0 0.5

5

10

15

20

25

low speed rotation
critical speed rotation
high speed rotation

H
ig

h
sp

ee
d

ro
ta

tio
n

-0.5 0 0.5

-0.5

0

0.5

Lo
w

sp
ee

d
ro

ta
tio

n

-0.5 0 0.5

-0.5

0

0.5

Figure 6: Hurricane-like solution: the cases of high speed rotation and low speed rotation.

in Eq. (3.3) is decoupled from the first three equations, and it is sufficient to consider the
solution (ρ, U , V ) of the first three equations of Eq. (3.3) in the limiting case.

The Riemann-type initial conditions for Eq. (3.1) are given as follows

(ρ, U , V, p) =





(ρ1, U1, V1, p1), x > 0.5, y > 0.5,

(ρ2, U2, V2, p2), x < 0.5, y > 0.5,

(ρ3, U3, V3, p3), x < 0.5, y < 0.5,

(ρ4, U4, V4, p4), x > 0.5, y < 0.5.

(3.4)

The negative contact discontinuity and positive contact discontinuity, which connect the l

and r areas, are denoted as J−
l r

and J+
l r

respectively

J−
l r

: wl = wr , pl = pr , w′l ≥ w′r ,

J+
l r

: wl = wr , pl = pr , w′l ≤ w′r .

where wl , wr are the normal velocity and w′
l
, w′r are the tangential velocity. Two types of

interaction of planar contact discontinuities are considered as follows.
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Figure 7: The solution of the pressureless equations Eq. (3.3) with the data (3.6). This figure is displayed
in the self-similarity (x/t , y/t)–plane. The notation (Ui , Vi) denotes the coordinate (x/t , y/t) = (Ui, Vi),
i = 1, 2, 3, 4.
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Figure 8: Density distribution and the local enlargement for the interaction of vortex sheets with same
signs, where p0 = 1.

1. Interaction of planar contact discontinuity for vortex sheets with same signs

J−12J−32J−41J−34. The vacuum solutions will be provided by the large Mach number limit
[27,40]. For such a case, the initial data satisfies

U1 = U2 > U3 = U4, V2 = V3 > V1 = V4, (3.5)

and in the computation, the initial data takes




(ρ1, U1, V1, p1) = (1, −0.75, −0.5, p0),

(ρ2, U2, V2, p2) = (2, −0.75, 0.5, p0),

(ρ3, U3, V3, p3) = (1, 0.75, 0.5, p0),

(ρ4, U4, V4, p4) = (3, 0.75, −0.5, p0).

(3.6)

This initial pressure distribution p0 is uniform and the density distribution could be arbi-
trary. Four planar contact discontinuities J−

i j
separate neighboring states and support the
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Figure 9: Density distributions for the interaction of vortex sheets with same signs, where p0 =
0.5, 0.25, 0.15 and 0.1.

same sign vortex sheets. On the contact discontinuity J−21, the density undergoes a jump,
and the vorticity is a singular measure

curl(U , V ) = (V1 − V2)δ(x − U1 t, y, t), V1 − V2 < 0,

where δ(x , y, t) is the standard Dirac function (measure). Therefore, this contact discon-
tinuity is the composite of an entropy wave and a vortex sheet. The same applies for
J−23, J−34, and J−41. Their instantaneous interaction results in a complex wave pattern. The
limiting system Eq. (3.3) has an explicit formula that consists of four constant states in
Ωi, i = 1,2,3,4, and a vacuum state inside a pyramid with edges (x/t, y/t) = (Ui, Vi), i.e.

(ρ, U , V, p)(x , y, t) =

¨
(ρi, Ui , Vi , p0), (x , y, t) ∈ Ωi,
vacuum, (x , y, t) in the pyramid.

The solution is schematically described in Fig. 7.
We use the fourth order gas-kinetic scheme to look into the asymptotic process for this

problem by setting the pressure smaller and smaller. The initial pressure is taken to be p0 =

1,0.5,0.25,0.15, and 0.1, respectively. The computation domain is [0,1]× [0,1] and the
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Figure 10: The delta-shock solution of the pressureless equations due to the interaction of vortex
sheets. This figure is displayed in the self-similarity (x/t , y/t)–plane. The notation (Ui, Vi) denotes the
coordinate (x/t , y/t) = (Ui , Vi), i = 1, 2, 3, 4. The dashed line denotes the support of delta-shocks.

In
te

ra
ct

io
n

of
vo

rte
x

sh
ee

ts
-2

-a

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8
In

te
ra

ct
io

n
of

vo
rte

x
sh

ee
ts

-2
-b

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

In
te

ra
ct

io
n

of
vo

rte
x

sh
ee

ts
-2

-c

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

In
te

ra
ct

io
n

of
vo

rte
x

sh
ee

ts
-2

-d

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 11: Density distributions for the interaction of vortex sheets with different signs, with p0 =
1, 0.75, 0.5 and 0.3.

non-reflection condition is used for the boundaries. The density distributions are displayed
in Fig. 8 and Fig. 9 at t = 0.35. The uniform mesh with ∆x = ∆y = 1/1500 is used for
p0 = 1,0.5, and 0.25. It is observed that as p0 = 1 (the Mach number M0 is relatively
large), the numerical solution displays more small scale structures. With the increase of
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Figure 12: Density distribution and the local enlargement for the interaction of vortex sheets with
different signs, with p0 = 0.2.

the initial Mach number M0, the complicated flow structure disappears. Uniform mesh
with ∆x = ∆y = 1/400 is used for the cases with p0 = 0.15, 0.1. The solution becomes
much closer to that given in Fig. 7 in the limiting low pressure case.

2. Interaction of planar contact discontinuities for vortex sheets with different

signs J−21J+32J+41J−34. For such a case, the delta-shock solutions will be emerged in the large
Mach number limit [27,40]. The initial data is designed so as to satisfy

U3 = U4 > U1 = U2, V2 = V3 > V1 = V4.

The initial pressure distribution is also uniform and the density distribution is arbitrary.
This case is different from the first case in this group. The four planar contact discontinu-
ities support vortex sheets of different signs and their interactions produce totally different
flow patterns. With such initial data, the solution of Eq. (3.3) has a singular solution
containing so-called delta-shocks, as shown in Fig. 10. The solution formula is

(ρ, U , V )(x , y, t) = (ρi, Ui , Vi), (x , y, t) ∈ Ωi. (3.7)

However, the solution becomes singular, particularly, the density takes a singular measure
on the support L1 ∪ L2 in Fig. 10

ρ(x , y, t) =
p
ρ1ρ3δ(x − x(t, s), y − y(t, s), t), (3.8)

where

(x , y) = (x(t, s), y(t, s))

represents the support L1 ∪ L2 of the Dirac measure in Fig. 10.

The numerical simulations are designed for the cases of different Mach numbers. The
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initial condition is given as follows





(ρ1, U1, V1, p1) = (1, 0.75, −0.5, p0),

(ρ2, U2, V2, p2) = (2, 0.75, 0.5, p0),

(ρ3, U3, V3, p3) = (1, −0.75, 0.5, p0),

(ρ4, U4, V4, p4) = (3, −0.75, −0.5, p0).

The uniform mesh with ∆x = ∆y = 1/1500 is used. The computation domain is [0,1]×
[0,1] and the non-reflection condition is used for the boundaries. The density distributions
are presented in Fig. 11 for the cases with initial pressure p0 = 1, 0.75, 0.5, and 0.3
respectively, at the output time t = 0.25. With the decrease of the pressure, or equivalently
with the increase of initial Mach number, it is observed that more and more small scaled
vortices are present in the solutions. For the case with p0 = 0.2, the density distribution
is presented in Fig. 12 at t = 0.28. The solution tends to be very close to the solution
Eqs. (3.7)-(3.8). This benchmark test validates the capability of higher-order scheme to
preserve the asymptotical stability for large Mach number flow simulations.

3.2.3. Transition from continuous flows to the present of shocks

This group is about the interaction of two-dimensional planar rarefaction waves, from
which a continuous transition from smooth flow to the presence of transonic shock will
emerge. A global continuous solution is constructed in [29] with a clear physical picture
for the bi-symmetrical interaction only when the rarefaction waves involved are weak.
In general, such a bi-symmetric interaction may result in the presence of shocks, which
never occur in the one-dimensional case since the interaction of one-dimensional rarefac-
tion waves produces only continuous solutions [11]. The backward rarefaction wave and

forward rarefaction wave, which connect the l and r areas, are denoted as
←−
Rl r and

−→
Rl r .

The two cases with four planar rarefaction waves
−→
R21
←−
R32
−→
R41
←−
R34 have the following initial

conditions,





(ρ1, U1, V1, p1) = (1,0.6233,0.6233,1.5),

(ρ2, U2, V2, p2) = (0.389,−0.6233,0.6233,0.4),

(ρ3, U3, V3, p3) = (1,−0.6233,−0.6233,1.5),

(ρ4, U4, V4, p4) = (0.389,0.6233,−0.6233,0.4),

(3.9)

and




(ρ1, U1, V1, p1) = (1,0.0312,0.0312,0.5),

(ρ2, U2, V2, p2) = (0.927,−0.0312,0.0312,0.45),

(ρ3, U3, V3, p3) = (1,−0.0312,−0.0312,0.5),

(ρ4, U4, V4, p4) = (0.927,0.0312,−0.0312,0.45).

(3.10)
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Figure 13: Interaction of planar rarefaction waves with initial condition Eq.(3.9).
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Figure 14: Interaction of planar rarefaction waves with initial condition Eq. (3.10).

The computation domain is [0,1]× [0,1] and the non-reflection condition is used for the
boundaries. The numerical results are presented in Figs. 13-14, in which a uniform mesh
with ∆x = ∆y = 1/400 is used. For the solution with the initial condition Eq. (3.9),
the planar rarefaction waves are strong and shocks are present in the interior domain,
for which there was a thorough study on the criterion for the shock formation [15]. On
the contrary, if the planar rarefaction waves are relatively weak, e.g., with the initial data
Eq. (3.10), the global solution is continuous [29], but the density in the interior domain
is quite low, as shown in Fig. 14. So the interaction of planar rarefaction waves in the
current benchmark tests is associated with multiple scale nature and the numerical results
in Figs. 13-14 are fully consistent with the theoretical analysis in [15,29].

3.2.4. Multiscale wave structures resulting from shock wave interactions

The fourth group deals with the interaction of shocks, and tests the ability of higher-order
schemes in the capturing of solutions with small scale structure. The study of shock wave
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interactions is always one of central topics in gas dynamics and related fields. The bench-
mark problems of step-facing shock interaction and the oblique shock reflection presented
in [45] were proposed in early 80s, which have been used for almost all newly designed
schemes afterwards. This can be seen from the huge number of the Google citations to
the original paper. The two-dimensional Riemann problems [49] with four planar shocks←−
S21
←−
S32
←−
S41
←−
S34 have been tested, where the backward rarefaction wave and forward rarefac-

tion wave connecting the l and r areas are denoted as
←−
Sl r and

−→
Sl r . To obtain the detailed

flow structure with less computational mesh points, the initial condition are given as fol-
lows




(ρ1, U1, V1, p1) = (1.5,0,0,1.5), x > 0.8, y > 0.8,

(ρ2, U2, V2, p2) = (0.5323,1.206,0,0.3), x < 0.8, y > 0.8,

(ρ3, U3, V3, p3) = (0.138,1.206,1.206,0.029), x < 0.8, y < 0.8,

(ρ4, U4, V4, p4) = (0.5323,0,1.206,0.3), x > 0.8, y < 0.8.

(3.11)

The computation domain is [0,1]× [0,1] and the non-reflection condition is used for the
boundaries. The numerical solution is displayed in Fig. 15, where a uniform mesh with
∆x =∆y = 1/1000 is used. This case is just the mathematical formation of the reflection
problem of oblique shocks in [45] and the symmetric line x = y can be regarded as the
rigid wall. Such a formulation can avoid the complexity of numerical boundary condition-
s and make the simulation simple. Any higher-order numerical scheme can test it easily
without involving numerical treatment of boundary conditions. The gas-kinetic schemes
with second-order and fourth-order temporal accuracy are tested with the same fifth-order
WENO initial spatial data reconstruction at each time level. Based on the simulation result-
s, it is obvious that the second order scheme is much more dissipative than the fourth-order
one. The small scaled vortices are resolved sharply using the fourth-order GKS. To capture
the small scale structure is important for the simulation of turbulent flows, which present
complex flow structure experimentally [23–25].

3.3. Conservation laws with source terms

The last group is the Rayleigh-Taylor instability to test the performance of higher-order
scheme for the conservation laws with source terms, and the governing equations are
written as

∂

∂ t




ρ

ρU

ρV

ρE


+

∂

∂ x




ρU

ρU2+ p

ρUV

U(ρE + p)


+

∂

∂ y




ρV

ρUV

ρV 2 + p

V (ρE + p)


 =




0
0
ρ

ρV


 .

The Rayleigh-Taylor instability happens on the interface between fluids with different den-
sities when an acceleration is directed from the heavy fluid to the light one. The instability
with fingering nature generates bubbles of light fluid rising into the ambient heavy fluid



732 L. Pan, J. Q. Li and K. Xu

In
te

ra
ct

io
n

of
sh

oc
ks

4
th

-o
rd

er
sc

he
m

e

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

In
te

ra
ct

io
n

of
sh

oc
ks

2
nd

-o
rd

er
sc

he
m

e

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 15: The density distribution for the fourth-order scheme and second-order scheme with ∆x =
∆y = 1/1000 for the shock wave interactions.
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Figure 16: Rayleigh-Taylor instability: density distribution with the mesh size ∆x = ∆y = 1/800 at
t = 1.75, 2, 2.25 and 2.5.

and spikes of heavy fluid falling into the light fluid. The initial condition of this prob-
lem [39] is given as follows

(
(ρ, U , V, p) =
�
2, 0, −0.025c cos(8πx , 2y + 1)

�
, x ≤ 0.5,

(ρ, U , V, p) =
�
1, 0, −0.025c cos(8πx , y + 3/2)

�
, x > 0.5,

where c =
p
γp/ρ is the sound speed and γ = 5/3. The computational domain is

[0,0.25]× [0,1]. The reflecting boundary conditions are imposed for the left and right
boundaries. At the top boundary, the flow variables are set as (ρ, U , V, p) = (1,0,0,2.5).
At the bottom boundary, they are (ρ, U , V, p) = (2,0,0,1). The source terms S(w) is given
by the cell averaged value w and ∂tS(w) = (0,0,∂tρ,∂t(ρV )) is given by the governing
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Figure 17: Rayleigh-Taylor instability: density distribution with the mesh size ∆x = ∆y = 1/1600 at
t = 1.75, 2, 2.25 and 2.5.

equation, respectively. The uniform meshes with ∆x = ∆y = 1/800 and 1/1600 are used
in the computation. The density distributions at t = 1.75, 2, 2.25, and 2.5 are presented
in Fig. 16 and Fig. 17. With the mesh refinement, the complicated flow structures are
observed. It is a test to check the suitability of higher-order schemes for the capturing of
interface instabilities.

4. Conclusions

In the past decades, gigantic amount of higher-order schemes for the compressible
Euler equations have been proposed, and they all have excellent performance in the tradi-
tional test cases designed thirty years ago for validating the performance of mainly second-
order schemes [45]. These old test cases can hardly distinguish the performance of the
current higher-order schemes. In order to set up a new standard to guide the further de-
velopment of higher-order schemes, in this paper a few benchmark cases are suggested.
The construction of accurate and robust higher-order schemes for the Euler equations is
related to many numerical and physical modeling issues. At current stage, in terms of flow
dynamics the design of higher-order schemes is still based on the exact Riemann solution
or any other simplified approximate Riemann solvers. The focus of the higher-order ap-
proaches under the frameworks of DG, finite difference, and finite volume, concentrates
mostly on the underlying data reconstruction or limiters. The necessity of higher-order dy-
namics, such as the close coupling of temporal-spatial flow evolution in the flux function,
has not been considered with sufficient attention. This may be one of the reasons for the
stagnation on the development of higher-order schemes in recent years. For higher-order
schemes, the improvement of time accuracy in the flux modeling may become important
for the improvement of the robustness and accuracy of the schemes, and for the capturing
of multiple scale flow structure with complicated wave interactions. Most benchmark tests
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in this paper are for the time accurate flow evolutions, which are closely related to the
hyperbolic nature of the Euler equations. These test cases impose a new level of quality
control on the higher-order schemes. To get good performance on all these cases requires
the construction of higher-order schemes on a more physically and mathematically consis-
tent way than the current existing high-order methodology.
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