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Abstract. An elliptic optimal control problem with constraints on the state variable
is considered. The Lavrentiev-type regularization is used to treat the constraints on
the state variable. To solve the problem numerically, the multigrid for optimization
(MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented.
Numerical results are reported to illustrate and compare the efficiency of both multigrid
strategies.
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1. Introduction

Different numerical techniques solve elliptic optimal control problems efficiently. Multi-
grid is considered as one of the most efficient tools for solving elliptic type problems. As ev-
idence, previous results show that multigrid solves optimal control problems with optimal
computational complexity. See for example the application of multigrid to unconstrained
optimization problems [13, 17], to optimal control problems [4, 5, 7, 12] and to inverse
problems [18, 19]. The purpose of this paper is to formulate a fast numerical technique
for solving state-constrained optimal control problems. These type of problems are very
important in different applications of optimal control of partial differential equations. We
focus on two representatives of multigrid methods for solving state-constrained optimal
control problems: the multigrid for optimization (MGOPT) technique and the collective
smoothing multigrid (CSMG). The CSMG scheme solves optimal control problems by solv-
ing the corresponding optimality system. This approach needs to customize the collective
smoothing strategy for each individual problem. Nevertheless, an appropriate design of
the CSMG components results in a robust algorithm with typical multigrid efficiency [6].
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On the other hand, the MGOPT method was first introduced in [13,17]. In this scheme the
multigrid solution process represents the outer loop where the control function is consid-
ered as the unique dependent variable. The inner loop consists of a classical one-grid opti-
mization scheme. We consider the application of these multigrid methods for solving state-
constrained elliptic optimal control problems. This work is an extension of [22], which is
the case of control-constrained elliptic optimal control problems. For the state-constrained
case, there are several well-known techniques available. Take for example the Lavrentiev-
type regularization and the Moreau-Yosida regularization, together with numerical solvers
like the interior point methods and the active set strategies [1, 2, 10, 14–16, 20, 21]. For
optimal control problems with state constraints, the corresponding Lagrange multipliers
are in general not contained in a function space but only given as measures [3, 8, 16].
In order to overcome this difficulty, a Lavrentiev-type regularization for the solution of
state-constrained optimal control problems is used. The Lagrange multipliers associated
with the regularized state constraints can be assumed to be functions in L2 [14, 16, 20].
This type of regularization procedure approximates the state constraints by mixed control-
state constraints. The solution of the regularized problem converges to the solution of the
original problem for regularization parameters tending to zero [14,16,21].

In the next sections, state-constrained optimal control problems are presented together
with the discretization scheme and a detailed description of appropriate smoothing and
optimization algorithms. In Section 4, the multigrid scheme is formulated. Numerical
experiments follow to demonstrate the ability of multigrid in solving state-constrained
optimal control problems and a section of conclusion completes this paper.

2. Constrained optimal control problems

In this section, we discuss state-constrained elliptic optimal control problems. The
corresponding optimality system is presented and the multigrid solution procedure is given
in the next section.

A state-constrained optimal control problem governed by a partial differential equation
can be formulated as follows:

min
u∈L2(Ω)

J(y,u) :=
1

2
‖y − z‖2

L2(Ω)
+
ν

2
‖u‖2

L2(Ω)
,

−∆y + F(y) + u = f in Ω,

y = 0 on ∂Ω,

y ≤ y ≤ y on ∂Ω,

(2.1)

where ν > 0 is the weight of the cost of the control, z ∈ L2(Ω) is the target function, f ∈
L2(Ω) and the function F is twice continuously differentiable and monotonically increasing
[9,15]. The bounds y and y are fixed functions in L2(Ω), where y ≤ y almost everywhere
in Ω. The existence and uniqueness of a solution to a state-constrained optimal control
problem depend on the nonlinearity and on the given constraints. See for example [9,15,
20].
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Different numerical approaches can be used in solving state-constrained optimal con-
trol problems. In this paper, we consider the Lavrentiev-type regularization. The pointwise
state constraints y(x)≤ y(x)≤ y(x) can be approximated by the following mixed control-
state constraints

y(x)≤ y(x)−λu(x)≤ y(x) a.e. in Ω,

where λ > 0 is a small parameter. With this approximation, the regularized state-constrained
optimal control problem is written as

min
u∈L2(Ω)

J(y,u) :=
1

2
‖y − z‖2

L2(Ω)
+
ν

2
‖u‖2

L2(Ω)
,

−∆y + F(y) + u= f ,

y = 0,

y(x)≤ y(x)−λu(x)≤ y(x).

For sufficiently small λ, satisfactory numerical results are obtained in Section 5. The cor-
responding solution of the regularized problem converges to the solution of the original
problem as the regularization parameter λ tends to zero [14,16,21].

By introducing an auxiliary variable v = y−λu, the control variable u can be expressed
in terms of v. Then the regularized state-constrained optimal control problem becomes

min
v∈L2(Ω)

J(y, v) :=
1

2
‖y − z‖2

L2(Ω)
+
ν

2λ2 ‖y − v‖2
L2(Ω)

,

−∆y + F(y) +
y

λ
− v

λ
= f ,

y = 0,

y ≤ v ≤ y .

This obtained system is now similar to an optimal control problem having a control-
constrained structure with respect to the variable v. To derive the optimality system which
is a characterization of the solution to the given optimization problem (2.1), we define the
Lagrange functional

L (y, v, p) = J(y, v) +

­
−∆y + F(y) +

y

λ
− v

λ
− f , p

·
,

where p is the Lagrange multiplier, which is assumed to be a function in L2 [14,16,20]. We
derive the first-order necessary conditions for a minimum by taking the Fréchet derivatives
of L with respect to the triple (y, v, p). We get

−∆y + F(y) +
y

λ
− v

λ
= f in Ω, y = 0 on ∂Ω,

−∆p+ F ′(y)p+
p

λ
+ (1+ γ)y − γv = z in Ω, p = 0 on ∂Ω,

�
− p

λ
− γ(y − v), t − v

�
≥ 0 in Ω,

(2.2)
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where γ = ν/λ2 and the inequality condition must hold for all t in the admissible set Vad

defined as
Vad =
n

v ∈ L2(Ω) | y ≤ v ≤ y a.e. in Ω
o

. (2.3)

The first equation is called the state equation and the second is called the adjoint equation.
The inequality condition is the optimality condition.

In the next section we discuss the finite difference discretization scheme together with
the smoothing algorithms associated to CSMG and MGOPT methods.

3. Discretization scheme and smoothing algorithms

We now consider the discrete version of the optimality system (2.2). By the finite
difference discretization, −∆k denotes the minus five-point stencil for the Laplacian and
hence we have

−∆k yk + F(yk) +
1

λ
yk −

1

λ
vk = fk,

−∆kpk + F ′(yk)pk +
1

λ
pk + (1+ γ)yk − γvk = zk,

(− 1

λ
pk − γ(yk − vk), tk − vk)≥ 0.

Let x ∈ Ωk where x = (ihk, jhk) and i, j are the indices of the grid points arranged lexico-
graphically. We first set

A=−(yi−1, j + yi+1, j + yi, j−1 + yi, j+1)− h2 fi, j ,

B = −(pi−1, j + pi+1, j + pi, j−1 + pi, j+1)− h2zi, j .

The values A and B are considered constant during the update of the variables at i, j. Then

A+ c yi, j + h2F(yi, j)−
1

λ
h2vi, j = 0,

B+ cpi, j + h2F ′(yi, j)pi, j + (1+ γ)h
2 yi, j − γh2vi, j = 0,

�
− 1

λ
pi, j − γyi, j + γvi, j, t i, j − vi, j

�
≥ 0,

(3.1)

where c =
�

4+ h2/λ
�

and the inequality holds for all t ∈ Vadk = {v ∈ L2
k
(Ωk) | y ≤ v ≤

y in Ωk}.
We can easily compute the updates for the variables yi, j and pi, j by using a Newton

method and hence we obtain an update for vi, j. In the presence of constraints, a new value
for vi, j is obtained by its projection onto the admissible set. Consider the Jacobian J of the
state and the adjoint equations with respect to yi, j and pi, j ,

Ji j =

�
c + h2F ′(yi, j) 0

h2(F ′′(yi, j)pi, j + (1+ γ)) c + h2F ′(yi, j)

�
,
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and the inverse of the Jacobian denoted by J−1 is

J−1
i j
=

1

det Ji j

�
c + h2F ′(yi, j) 0

−h2(F ′′(yi, j)pi, j + (1+ γ)) c + h2F ′(yi, j)

�
,

where det Ji j =
�

c + h2F ′(yi, j)
�2

. The local Newton update for yi, j and pi, j is

�
yi, j

pi, j

�
=

�
yi, j

pi, j

�
+ J−1

i j

�
ry(vi, j)

rp(vi, j)

�
,

where

ry(vi, j) = −
h

A+ c yi, j + h2F(yi, j)−
1

λ
h2vi, j

i
,

rp(vi, j) = −[B+ cpi, j + h2F ′(yi, j)pi, j + (1+ γ)h
2 yi, j − γh2vi, j],

denote the residuals of the state and the adjoint equations, respectively. The update above
shows that yi, j and pi, j can be defined as functions of vi, j. To solve an update for vi, j,
replace yi, j and pi, j in the inequality condition in (3.1). The reduced cost functional is
given by Ĵ(v) = J(y(v), v) and the optimal control solution of (2.1) is characterized by the
optimality condition

Ĵ ′(v, t − v) = (−p/λ− γ(y − v), t − v)≥ 0

for all t ∈ Vad . In the absence of constraints, we have

Ĵ ′(v, t − v) = (−p/λ− γ(y − v), t − v) = 0.

Hence we define an auxiliary variable evi, j to be the solution of

−pi, j/λ− γ(yi, j − evi, j) = 0

and we get

evi, j =
1

γ

� pi, j

λ
+ γyi, j

�
.

Since the update for vi, j must be within the admissible set (2.3), then the new value for
vi, j is obtained by projecting evi, j onto Vadk given by

vi, j =





y
i, j

if evi, j ≤ y
i, j

,

evi, j if y
i, j
< evi, j < y i, j,

y i, j if evi, j ≥ y i, j.

With this value of vi, j, the updates for the state variable y(vi, j) and the adjoint variable
p(vi, j) are computed by the local Newton update. This completes the smoothing algorithm
for the CMSG method.
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For the MGOPT method, the gradient projection method [11] is utilized as the ’smooth-
ing’ algorithm in order to treat the bound constraints. First we introduce the reduced cost
functional

Ĵ(v) = J(y(v), v),

together with ∇Ĵ(v) = −p/λ− γy + γv which is the gradient with respect to v. For the
unconstrained case, we want to find a solution v of minv Ĵ(v)which is equivalent to solving
∇Ĵ(v) = 0. For the constrained case, we use a projection to find an update v ∈ Vad , where
Vad is given by (2.3). Define the projection P onto Vad by

PVad
(v) =





y if v ≤ y,
v if y < v < y,
y if v ≥ y.

Given the current iterate vℓ, the new iterate vℓ(α) is defined as

vℓ(α) =PVad
(vℓ+αdℓ),

where dℓ is a search direction and α satisfies the sufficient decrease condition [11]

Ĵ(vℓ(α))− Ĵ(vℓ)≤ −σ
α
‖vℓ− vℓ(α)‖2,

for bound constrained problems. In the numerical experiments in Section 5, the value of
σ is chosen to be 10−4.

4. The multigrid method

In this section we present the the multigrid procedure for solving state-constrained
elliptic optimal control problems. A typical multigrid method uses a sequence of nested
discretization grids of increasing fineness Ω1 ⊂ Ω2 ⊂ · · · ⊂ ΩL = Ω. Associated to the
sequence of grids is a sequence of finite difference spaces V1 ⊂ V2 ⊂ · · · ⊂ VL = V. This
means that at each grid level k, the discrete problem is represented by

Ak(wk) = gk, (4.1)

where Ak(·) represents a discrete nonlinear operator on Ωk. In the CSMG case, we solve
(2.2) and define w := (y, v, p). On the other hand, the MGOPT method is applied to solve
minvk

�
Ĵk(vk)− (gk, vk)k

�
which is equivalent to solving ∇Ĵk(vk) = gk in Ωk. The term gk

is introduced to give a recursive formulation, where gk = 0 at the finest resolution k = L.
Hence in this case, w := v and Ak(vk) = ∇Ĵk(vk). We need transfer operators between
finer and coarser grids. We choose a full-weighting restriction operator Ik−1

k
: Vk → Vk−1

and a bilinear interpolation operator Ik
k−1 : Vk−1→ Vk.

Let the smoothing algorithm be represented by Sk such that we get an update wℓ
k
=

Sk(w
ℓ−1
k

, gk). For the constrained case, the projection procedure is incorporated within
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the smoothing strategy. Starting with an initial approximation w0
k
, we apply γ1 times of

the smoothing procedure and obtain w
γ1
k

. Now the desired solution wk can be written as
wk = w

γ1
k
+ ek for some error ek. Therefore (4.1) can be written as Ak(w

γ1
k
+ ek) = gk or

equivalently as

Ak(w
γ1
k
+ ek)− Ak(w

γ1
k
) = gk − Ak(w

γ1
k
). (4.2)

Next we represent (4.2) on a coarser grid Ωk−1 and define

wk−1 := Ik−1
k

w
γ1
k
+ ek−1

as a coarse-grid approximation to wk. On the left hand side of (4.2) we represent Ak by
Ak−1 and w

γ1
k

by Ik−1
k

w
γ1
k

. On the other side we apply the restriction operator and we get
Ik−1
k
(gk− Ak(w

γ1
k
)). Hence we have the following equation

Ak−1(wk−1) = Ik−1
k
(gk − Ak(w

γ1
k
)) + Ak−1(I

k−1
k

w
γ1
k
). (4.3)

We define

τk−1 = Ak−1(I
k−1
k

w
γ1
k
)− Ik−1

k
Ak(w

γ1
k
)

then (4.3) can simply be written as

Ak−1(wk−1) = Ik−1
k

gk +τk−1. (4.4)

The term τk−1 is called the fine-to-coarse residual/gradient correction. The solution of
(4.3) gives the error

ek−1 := wk−1 − Ik−1
k

w
γ1
k

.

Therefore we have a correction to the fine grid approximation as

w
γ1+1
k

= w
γ1
k
+αIk

k−1(wk−1 − Ik−1
k

w
γ1
k
).

For CSMG α = 1, while for MGOPT α is the step length obtained after a line search proce-
dure in the direction Ik

k−1(wk−1− Ik−1
k

w
γ1
k
). Finally, we apply γ2 iterations of the smoothing

algorithm to damp possible high frequency errors that may arise from the coarse grid cor-
rection process. One cycle of the multigrid method is presented in the following algorithm.
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Algorithm 4.1. Multigrid algorithm

Initialize w0
k
. If k = 1, solve Ak(wk) = gk. Else

1. Apply γ1 iterations of a smoothing algorithm to the problem at resolution k.

wℓk = Sk(w
ℓ−1
k
), ℓ = 1,2, · · · ,γ1.

2. Apply γ cycles of MG (γ1,γ2) to the coarse grid problem

Ak−1(wk−1) = gk−1

to obtain wk−1, where

gk−1 = Ik−1
k

gk +τk−1,
τk−1 = Ak−1(I

k−1
k

w
γ1
k
)− Ik−1

k
Ak(w

γ1
k
).

3. For a given step length α,

w
γ1+1
k

= w
γ1
k
+α Ik

k−1(wk−1− Ik−1
k

w
γ1
k
).

4. Apply γ2 iterations of a smoothing algorithm to the problem at resolution k.

wℓk = Sk(w
ℓ−1
k
), ℓ= γ1 + 2, · · · ,γ1 + γ2 + 1.

The parameter γ characterizes the type of multigrid cycle being used. Typical values
are γ= 1 which is called the V-cycle and γ = 2 is W-cycle.

5. Numerical results

We now present some numerical results on the computational performance of the
multigrid schemes for solving state-constrained elliptic optimal control problems. For the
results of the experiments, we use γ1 = γ2 = 2 pre- and post- smoothing steps. This means
that one multigrid cycle uses γ1+γ2 = 4 iterations of the smoothing algorithm on the finest
level. All computations were performed in Matlab on a PC with a 2.67 GHz processor.

We consider problem (2.1) on a unit square domain Ω = (0,1)2 ⊂ R2 with F(y) = y3

and f , z ∈ L2(Ω) given by

f (x1, x2) = 0, z(x1, x2) = sin(2πx1) sin(2πx2).

We also consider box-constraints −0.5≤ y ≤ 0.5 and all unknown variables are initialized
to zero. The target function z is shown in Fig. 1.

For the application of the CSMG algorithm, the numerical results are shown in Table 1.
In this case, the CPU time in seconds are noted until the L2-norm of the state and adjoint
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Figure 1: The target fun
tion z.
residuals, ‖ry‖L2 and ‖rp‖L2, satisfy a stopping tolerance of tol = 10−5. The Lavrentiev
regularization parameter λ are chosen to be λ =

p
ν , where ν = 10−8 and 10−10. The

CSMG method exhibits an almost independence of the number of iterations on ν and on
the size of the mesh where the problem is being solved. The convergence behavior of
the CSMG method deteriorates as the parameter ν becomes too small. For MGOPT, the
results are reported in Table 2. The CPU time in seconds are noted until the L2-norm of the
difference ‖vℓ− vℓ(1)‖L2 satisfies a stopping tolerance of tol = 10−5. The L2-norm of the
state and adjoint residuals are also reported on Table 2. The results show that the number
of iterations is independent on the parameter ν and on the mesh size. The MGOPT method
converges to the same solution as the CSMG after one iteration. As the parameter ν goes
to zero, the MGOPT method shows a faster convergence behavior. This motivates a further
investigation on bang-bang control problems with ν = 0. The numerical solutions for the
state variable y using λ = 10−4 and λ= 10−5 are shown in Fig. 2.

Figure 2: Numeri
al solutions by CSMG for the state variable y using λ = 10−4 ( left) and λ = 10−5(right).
6. Conclusions

Multigrid schemes for solving elliptic optimal control problems with constraints on the
state variable are presented. We consider the Lavrentiev-type regularization to treat the
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al results using CSMG method.
ν Mesh Iter ‖ry‖L2 ‖rp‖L2 Time (sec)

10−8
257× 257 7 7.607e-06 7.473e-10 8.2
513× 513 7 6.975e-06 6.944e-10 34.3

1025× 1025 7 6.769e-06 6.852e-10 141.5

10−10
257× 257 8 3.225e-06 3.226e-11 9.3
513× 513 7 1.395e-06 1.530e-11 34.6

1025× 1025 7 2.549e-06 2.423e-11 142.4Table 2: Numeri
al results using MGOPT with gradient proje
tion method.
ν Mesh Iter ‖ry‖L2 ‖rp‖L2 ‖vℓ− vℓ(1)‖L2 Time (sec)

10−8
257× 257 1 1.073e-10 2.421e-12 1.215e-06 29.0
513× 513 1 3.903e-09 3.767e-10 3.157e-06 183.3

1025× 1025 1 2.320e-07 1.161e-08 7.641e-07 1232.4

10−10
257× 257 1 1.938e-12 2.586e-16 1.022e-06 17.0
513× 513 1 3.630e-12 1.739e-16 4.340e-06 102.1

1025× 1025 1 3.418e-11 1.099e-12 1.222e-06 595.1

constraints on the state variable. The results of the numerical experiments show that CSMG
and MGOPT multigrid strategies provide a multigrid computational efficiency. It also shows
that the CSMG scheme is faster compared to the MGOPT method. The CPU time approxi-
mately increase as a factor of four by halving the mesh size, which is a typical characteristic
of an efficient multigrid solver. However, CSMG requires a carefully designed smoothing
algorithm for each individual problem, while MGOPT does not require any adaptation to
the problem. Different optimization techniques can be used as a smoothing procedure
for MGOPT method. Since MGOPT accelerates the one grid optimization scheme [23], a
topic which can be considered for future research is the appropriate use of other types of
optimization algorithms as smoothers in order to achieve faster convergence results.
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