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Abstract. An algebraic Newton-multigrid method is proposed in order to efficiently

solve systems of nonlinear reaction-diffusion problems with stochastic coefficients. These

problems model the conversion of starch into sugars in growing apples. The stochastic

system is first converted into a large coupled system of deterministic equations by apply-

ing a stochastic Galerkin finite element discretization. This method leads to high-order

accurate stochastic solutions. A stable and high-order time discretization is obtained by

applying a fully implicit Runge-Kutta method. After Newton linearization, a point-based

algebraic multigrid solution method is applied. In order to decrease the computational

cost, alternative multigrid preconditioners are presented. Numerical results demon-

strate the convergence properties, robustness and efficiency of the proposed multigrid

methods.

AMS subject classifications: 35K57, 35Q92, 65M55, 65N35

Key words: Multigrid, stochastic Galerkin finite element method, reaction-diffusion problems, im-

plicit Runge-Kutta method and PDEs with random coefficients.

1. Introduction

Stochastic Galerkin finite element methods are being applied to a wide range of stochas-

tic applications, e.g., to elasticity problems [10], heat transfer problems [21], in fluid-

structure interactions [31] and in computational fluid mechanics [14]. In most cases, lin-

ear partial differential equations with random coefficients are considered. The extension to

nonlinear problems is generally not straightforward for stochastic Galerkin methods [18].

The stochastic Galerkin projection may not be computed analytically, except for polynomial

nonlinearities. Also, the stochastic Galerkin method transforms a stochastic problem into

high-dimensional deterministic systems, for which special solvers need to be designed.
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As an alternative to the stochastic Galerkin finite element method, so-called stochas-

tic collocation methods were proposed [1, 17]. These methods enable a black-box reuse

of deterministic simulation codes and do not require modifications for solving nonlinear

stochastic problems. Although very good results can be obtained with the stochastic col-

location method, its convergence rate is typically somewhat slower than the stochastic

Galerkin convergence, in terms of the number of deterministic PDEs to be solved [7, 24].

In terms of computational cost, the success of the stochastic Galerkin method depends on

the solution method for the high-dimensional deterministic Galerkin systems. For linear

stochastic problems, efficient solvers can easily be designed [8,22,25]. This paper explores

the construction of a multigrid solution approach for stochastic Galerkin discretizations of

systems of nonlinear PDEs.

The stochastic Galerkin solution of a set of nonlinear, time-dependent reaction-diffusion

equations is considered. We focus on a particular application, namely the conversion of

starch into sugars in growing fruit. The accuracy of the simulation depends on the ac-

curacy of a large set of parameters which model the chemical composition and shape of

the fruit under consideration. Many of these parameters are inherently variable; hence a

stochastic simulation is needed.

In the case of linear, time-dependent partial differential equations (PDE) with random

coefficients, efficient multigrid methods exist for the systems resulting from a stochastic

Galerkin finite element discretization combined with an implicit Runge-Kutta (IRK) time

discretization [23]. The implicit Runge-Kutta method guarantees a high-order and stable

time discretization and enables one to take larger time steps than with explicit time dis-

cretization schemes. In this paper we investigate whether such multigrid approaches can

be extended to systems of nonlinear, stochastic PDEs.

This paper is structured as follows. In Section 2, the model equations are presented.

Section 3 details the discretization of the set of nonlinear, stochastic PDEs. Section 4

proposes an algebraic multigrid (AMG) method to solve the high-dimensional discretized

systems efficiently. Some implementation issues are addressed in Section 5. The biological

application that motivated this research is detailed in Section 6. The properties of the AMG

method are demonstrated by numerical experiments in Section 7. Section 8 summarizes

the main conclusions of this paper.

2. Model description

The stochastic reaction-diffusion problem that we consider in this paper, can be de-

scribed by the following set of equations:

(
∂tu1(x , t,ω) =∇ · (a1(x ,ω)∇u1(x , t,ω) + R1(u1(x , t,ω),u2(x , t,ω)),

∂tu2(x , t,ω) =∇ · (a2(x ,ω)∇u2(x , t,ω) + R2(u1(x , t,ω),u2(x , t,ω)),
(2.1)

in D× [0, T f ]×Ω,

~n · ∇u1(x , t,ω) = 0 and ~n · ∇u2(x , t,ω) = 0 in ∂ D× [0, T f ]×Ω.
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The symbol ∂t corresponds to differentiation with respect to the time variable t. The

concentrations of two different types of chemical particles are represented respectively by

u1(x , t,ω) and u2(x , t,ω). Here, x ∈ D denotes the spatial coordinates with D ⊂ Rd the d-

dimensional spatial domain, t ∈ [0, T f ] is the time variable andω represents the stochastic

nature of the solutions, i.e., ω ∈ Ω with Ω a sample space. Together with a σ-algebra

F and a probability measure E , a complete probability space (Ω,F ,E ) is defined. The

diffusion coefficients a1 and a2 are modelled as random fields. A random field is defined

by a mapping D × Ω → R; each sample of a random field corresponds to a deterministic

function in space. In order to guarantee the existence and uniqueness of the solution

to (2.1), we assume that the diffusion coefficients a1 and a2 are bounded and uniformly

coercive, see [21]. The reaction terms R1 and R2 are typically nonlinear functions of u1 and

u2. The model is completed with appropriate initial conditions, which can be stochastic

as well. Zero Neumann boundary conditions are applied in order to model the fact that

chemical particles cannot leave the volume boundary ∂ D.

2.1. Reaction model

The Gray-Scott model [20] represents the following cubic auto-catalytic chemical reac-

tion between chemicals U and V :

U + 2V → 3V,

V →W,

where W is an inert product. These two reactions occur at different rates throughout the

volume according to the relative concentrations at each point. The reaction kinetics R1 and

R2 respectively correspond to

R1(u1,u2) =−κAu1u2
2 + κ f (1− u1), (2.2)

R2(u1,u2) =κAu1u2
2 − κ2u2, (2.3)

where κ f denotes the feed rate of chemical U , κ2 is the reaction rate of the second reaction

and κA a dimensionless rate constant corresponding to the first reaction. The last term

of Eq. (2.2) expresses that the chemical U is replenished at a rate proportional to the

difference between its current value and its maximum value, which is equal to 1.

2.2. Finite-dimensional noise

We assume that the random fields a1, a2 and the random rate parameters in R1, R2

depend on a finite number of random variables. A random variable ξi is a function of

elements of a sample space, i.e., ξi : Ω → R, and is characterized by a probability den-

sity function ̺(yi) defined on Γi, with Γi the image of ξi . Based on the Doob-Dynkin

lemma [2], the above assumption yields that the solutions u1 and u2 can be expressed as

a function of ξ, u1(x , t,ω) = u1(x , t,ξ) and u2(x , t,ω) = u2(x , t,ξ). Here, ξ denotes a

random vector collecting all the random variables present in the problem description. We
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will assume that ξ consists of L independent random variables ξi , ξ = (ξ1, · · · ,ξL) and has

a joint probability density function ̺(y) =
∏L

i=1̺i(yi) for y ∈ Γ =
∏L

i=1 Γi. This enables

one to rewrite (2.1) as a parametric deterministic problem in D× [0, T f ]× Γ:

∂tu j(x , t, y) =∇ · (a j(x , y)∇u j(x , t, y) + R j(u1(x , t, y),u2(x , t, y)) ( j = 1,2). (2.4)

2.3. Growing spatial domain

Since we want to simulate ripening and maturation processes of growing fruit, the

spatial domain D is time-dependent: D(t). A uniform domain growth will be considered.

That means that any two points of the volume move apart with a relative velocity that

depends only on the separation and is independent of the spatial position, i.e., which is a

function of time only. As a result, the evolution of the boundary ∂ D(t) can be described

by r0r(t), with r0 the initial radius of the domain and r(t) a growth function. In order to

describe the reaction-diffusion problem (2.4) in a fixed domain D, a reference coordinate

system for the growing domain is chosen. The origin of the coordinate system corresponds

to a reference point which remains fixed while the domain grows. For the apple domain

that will be described in Section 6, this reference domain coincides with the center of the

apple. The coordinates (x , t, y) of the fixed domain correspond to the scaling,

(x , t, y)→ (x , t, y) =

�
x

r0r(t)
, t, y

�
.

In addition to this coordinate transformation, extra dilution terms are introduced in

(2.4) in order to model the decrease of the local concentration as the containing vol-

ume increases by uniform domain growth. Denote by br(t) = 1/(r2
0 r2(t)) and er(t) =

(3∂t r(t))/r(t), the transformed reaction-diffusion equations are then given by

∂tu j(x , t, y) =br(t)∇ ·
�

a j(x , y)∇u j(x , t, y)
�
+ R j(u1(x, t, y),u2(x , t, y))

− er(t)u j(x , t, y) for j = 1,2 in D× [0, T f ]× Γ. (2.5)

3. Overview of discretization

The system of nonlinear stochastic PDEs (2.5) can be linearized first, i.e., by applying

Newton’s method, after which a stochastic Galerkin discretization of the Jacobian can be

constructed. Alternatively, constructing the Jacobian can be avoided by applying a quasi-

Newton strategy, see, e.g., [19]. We will adopt the former approach since a Jacobian can

easily be constructed for polynomial nonlinearities as in (2.2)–(2.3).

3.1. Newton linearization

Newton’s method starts from an initial guess u
(0)

j
and iteratively updates this approx-

imation by solving a linearized problem in every Newton step. We construct a linearized
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model for (2.5) by starting from the weak formulation. That is, find u j ∈ L2(0, T f ; H1(D))⊗
L2(Γ) such that u j = u j,init and

∫

Γ×D

∂tu j v j̺d xd y + br(t)
∫

Γ×D

a j∇u j∇v jρd xd y −

∫

Γ×D

R j(u1,u2)v jρd xd y

+er(t)
∫

Γ×D

u j v j ρd xd y = 0 ∀v j ∈ H0
1(D)⊗ L2(Γ), ( j = 1,2). (3.1)

The Hilbert space L2(0, T f ; H1(D)), with [0, T f ] the time interval on which (2.5) holds,

is defined in [21]. The Lebesgue space L2(Γ) contains all square-integrable functions on

Γ. The left-hand side of (3.1) is called the nonlinear residual associated with the weak

formulation and is denoted as F j(u1,u2) ( j = 1,2). For u j = u
(k)

j
+ δ

(k)

j
in (3.1), we have

that the corrections δ
(k)

j
∈ L2(0, T f ; H1

0(D))⊗ L2(Γ) satisfy

∫

Γ×D

∂tδ
(k)

j
v j ̺d xd y +br(t)

∫

Γ×D

a j∇δ
(k)

j
∇v j̺d xd y +er(t)

∫

Γ×D

δ
(k)

j
v j ̺d xd y

−

∫

Γ×D

�
R j

�
u
(k)
1 + δ

(k)
1 ,u

(k)
2 + δ

(k)
2

�
−R j

�
u
(k)
1 ,u

(k)
2

��
v j ̺d xd y

= −F j

�
u
(k)

1
,u
(k)

2

�
∀v j ∈ H1

0(D)⊗ L2(Γ), ( j = 1,2). (3.2)

Based on the Gray-Scott reaction (2.2)–(2.3), we have that

R1

�
u
(k)
1 + δ

(k)
1 ,u

(k)
2 + δ

(k)
2

�
− R1

�
u
(k)
1 ,u

(k)
2

�

=− κA

�
u
(k)
1 + δ

(k)
1

��
u
(k)
2 + δ

(k)
2

�2

+ κAu
(k)
1

�
u
(k)
2

�2

+ κ f

�
1− (u(k)1 + δ

(k)
1 )
�
− κ f

�
1− u

(k)
1

�

=− κA

�
2u
(k)
1 u

(k)
2 δ

(k)
2 + u

(k)
1

�
δ
(k)
2

�2

+ δ
(k)
1

�
u
(k)
2

�2

+2δ
(k)
1 u

(k)
2 δ

(k)
2 + δ

(k)
1

�
δ
(k)
2

�2
�
−κ f δ

(k)
1 ,

and similarly for R2. Following the approach in [6, p. 325], we obtain the linearized

problem by dropping the high-order terms in δ
(k)
1 and δ

(k)
2 in (3.2). This yields: find

δ1,δ2 ∈ L2(0, T f ; H1
0(D))⊗ L2(Γ) such that ∀v1, v2 ∈ H1

0(D)⊗ L2(Γ),

∫

Γ×D

∂tδ
(k)
1 v1̺d xd y +br(t)

∫

Γ×D

a1∇δ
(k)
1 ∇v1̺d xd y +

�
er(t) + κ f

�∫

Γ×D

δ
(k)
1 v1̺d xd y

+ κA

∫

Γ×D

�
2u
(k)

1
u
(k)

2
δ
(k)

2
+ δ

(k)

1

�
u
(k)

2

�2
�

v1̺d xd y = −F1

�
u
(k)

1
,u
(k)

2

�
, (3.3)
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∫

Γ×D

∂tδ
(k)
2 v2̺d xd y + br(t)

∫

Γ×D

a2∇δ
(k)
2 ∇v2̺d xd y +

�
er(t) + κ2

�
∫

Γ×D

δ
(k)
2 v2̺d xd y

−κA

∫

Γ×D

�
2u
(k)
1 u

(k)
2 δ

(k)
2 +δ

(k)
1

�
u
(k)
2

�2
�

v2̺d xd y = −F2

�
u
(k)
1 ,u

(k)
2

�
. (3.4)

The solution to (3.3)–(3.4) is called the Newton correction. At Newton step k + 1, the

current approximation u
(k)

j
is updated as u

(k+1)

j
= u

(k)

j
+ δ

(k)

j
, for j = 1,2. The remainder

of this section describes the spatial, stochastic and time discretization of (3.3)–(3.4) which

will lead to a large algebraic system. The multigrid solution of the algebraic, linearized

equations is then discussed in Section 4.

3.2. Stochastic Galerkin finite element discretization

By introducing finite-dimensional subspaces Vh ⊂ H1, Vh,0 ⊂ H1
0 and Wp ⊂ L2(Γ), a

stochastic Galerkin finite element discretization of (3.3)–(3.4) leads to an equation similar

to (3.3)–(3.4), with δ
(k)
1 , δ

(k)
2 replaced by respectively δ

(k)

1,hp
,δ
(k)

2,hp
∈ L2(0, T f ; Vh(D))⊗Wp

and v1, v2 replaced by v1,hp, v2,hp ∈ Vh,0 ×Wp.

We will use a spatial finite element discretization defined on a conforming triangulation

of the domain D. The finite-dimensional subspace Vh,0 is defined as the span {s1(x), . . . ,

sN (x)}, where sn is a nodal basis function and N the total number of spatial degrees of

freedom. Since no Dirichlet boundary is present, the subspaces Vh and Vh,0 coincide.

The stochastic discretization applies a set of orthonormal, multi-dimensional polynomi-

als Ψq(y). The polynomials are chosen to be orthogonal with respect to the probabil-

ity density function ̺(y) of the random variables present in the problem. This guar-

antees a fast convergence of the stochastic discretization error [21]. For example, in

the case of a Gaussian distribution, normalized Hermite polynomials will be applied; in

the case of a uniform distribution, Legendre polynomials. The subspace WP is then de-

fined as WP = span{Ψ1(y), . . . ,ΨQ(y)}. The polynomials Ψ = [Ψ1, . . . ,ΨQ] form a finite-

dimensional generalized polynomial chaos basis [30]. The number of degrees of freedom

Q depends on the number of random variables L and on the order P of the polynomials.

A complete polynomial basis consists of Q = (L + P)!/(L!P!) polynomials. The unknowns

δ
(k)

1,hp
and δ

(k)

2,hp
are then given for j = 1,2 by

δ
(k)

j,hp
(x, t, y) =

N∑

n=1

Q∑

q=1

δ
(k)

j,n,q
(t)sn(x)Ψq(y). (3.5)

Remark 3.1. Instead of a global polynomial subspace Wp, also local polynomial basis func-

tions can be considered, e.g., [15, 29]. These so-called multi-element stochastic approxi-

mations are particularly useful for approximating discontinuities in probability space which

may result from the presence of bifurcations. In this paper, the use of global polynomial

approximations is justified since we consider a range of uncertain input parameters so that

no bifurcations are present.
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In order to rewrite the finite-dimensional formulation of (3.3)–(3.4) in matrix notation,

we will first reformulate the random fields a1 and a2 so that the spatial and stochastic part

can easily be separated, i.e.,

a j(x , y) =

S j∑

i=1

a j,i(x)ϕ j,i(y) ( j = 1,2). (3.6)

For example, when the random field a j has the form of a truncated Karhunen-Loève ex-

pansion [16], S j = L̂ + 1, ϕ j,i(y) = yi−1 and y0 = 1. When a j is represented by an

L̂-dimensional generalized polynomial expansion [11,30] of order P̂, S j = ( L̂+ P̂)!/( L̂!P̂!)

and ϕ j,i(y) = Ψi(y). Based on (3.6), a set of S j stiffness matrices K j,i ∈ R
N×N can be

constructed whose elements are defined as

K j,i(m, n) :=

∫

D

a j,i(x)∇sm(x)∇sn(x)d x ,

for m, n = 1, . . . , N ; j = 1,2 and i = 1, . . . ,S j . The stochastic part of (3.6) leads to a set of

matrices Ci ∈ R
Q×Q, each defined as

Ci := 〈ϕ1,iΨΨ
T 〉, i = 1, · · · ,S1,

Ci := 〈ϕ2,i−S1+1ΨΨ
T 〉, i = S1 + 1, · · · ,S1 + S2 − 1,

with Ψ = [Ψ1 . . .ΨQ]
T . The notation 〈·〉 corresponds to the integral

∫
Γ
·̺d y. We assume

that ϕ1,1 ≡ ϕ2,1 ≡ 1, since the first term in (3.6) is typically the mean of a j . Matrix

C1 := 〈ΨΨT 〉 ∈ RQ×Q corresponds then to an identity matrix, due to the orthonormality of

the polynomials Ψq.

The linearized reaction terms in (3.3)–(3.4) involve products of random fields. These

products define the random fields w
(k)

hp
:= u

(k)

1,hp
u
(k)

2,hp
and z

(k)

hp
:= (u

(k)

2,hp
)2, which can be

represented by a generalized polynomial expansion [30] as follows:

w
(k)

hp
(x , t, y) := u

(k)

1,hp
(x , t, y)u

(k)

2,hp
(x , t, y) =

∞∑

i=1

ŵ
(k)

i
(x , t)Ψi(y), (3.7)

z
(k)

hp
(x , t, y) :=

�
u
(k)

2,hp
(x , t, y)

�2

=

∞∑

i=1

ẑ
(k)

i
(x, t)Ψi(y). (3.8)

The functions ŵ
(k)

i
and ẑ

(k)

i
are respectively defined as

ŵ
(k)

i
(x , t) :=

Q∑

c=1

Q∑

q=1

û
(k)
1,c
(x , t)û

(k)
2,q
(x , t)〈ΨcΨqΨi〉/〈Ψ

2
i 〉, (3.9)

ẑ
(k)

i
(x , t) :=

Q∑

c=1

Q∑

q=1

û
(k)
2,c (x , t)û

(k)
2,q(x , t)〈ΨcΨqΨi〉/〈Ψ

2
i 〉, (3.10)
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where û
(k)

j,q
( j = 1,2 and q = 1, . . . ,Q) correspond to the polynomial chaos coefficient

functions of u
(k)

j,hp
. The orthonormality of the polynomials Ψi gives that 〈Ψ2

i 〉 ≡ 1 and that

the summation in (3.7)–(3.8) can be truncated after Z = (L + 2P)!/(L!(2P)!) terms, with

P the polynomial order used to construct to polynomial basis of WP . Based on (3.7)–(3.8),

the matrix formulation of the linearized reaction terms results in a set of Z time-dependent

reaction matrices J
(k)

i
and G

(k)

i
, whose elements respectively equal

J
(k)

i
(t)(m, n) :=

∫

D

ŵ
(k)

i
(x , t)sm(x)sn(x)d x, (3.11)

G
(k)

i
(t)(m, n) :=

∫

D

ẑ
(k)

i
(x , t)sm(x)sn(x)d x, m, n = 1, · · · , N , i = 1, · · · , Z . (3.12)

The corresponding stochastic discretization matrices C i ∈ R
Q×Q are defined as

C i := 〈ΨiΨΨ
T 〉 i = 1, · · · , Z . (3.13)

Combining the above results, we can rewrite the finite-dimensional formulation of (3.3)–

(3.4) in matrix formulation:
 
(I2 ⊗ C1 ⊗M)∂t + br(t)K + eR(t)⊗ C1⊗M + κA

Z∑

i=1

G (k)(t)

!
δ
(k)(t) = f(t), (3.14)

with

eR(t) :=

�
er(t) + κ f 0

0 er(t) + κ2

�
,

I2 ∈ R
2×2 an identity matrix, matrix K defined as

K :=

� ∑S1

i=1
C1 ⊗ K1,i 0NQ

0NQ C1⊗ K2,1 +
∑S2

i=2 Ci+S1−1 ⊗ K2,i

�
∈ R2NQ×2NQ,

0NQ ∈ R
NQ×NQ an all-zero matrix and the time-dependent matrix G (t) given by

G (k)(t) :=

�
C i ⊗ G

(k)

i
(t) C i ⊗ 2J

(k)

i
(t)

−C i ⊗ G
(k)

i
(t) −C i ⊗ 2J

(k)

i
(t)

�
. (3.15)

The time-dependent vector δ(k)(t) collects the 2NQ functions δ
(k)

j,n,q
(t) in (3.5), sorted first

per type of chemical particle, then per stochastic basis function and finally per spatial finite

element node. The elements of the mass matrix M ∈ RN×N equal

M(m, n) =

∫

D

sm(x)sn(x)d x m, n = 1, · · · , N .

The right-hand side f(t) in (3.14) is a vector of 2NQ time-dependent functions corre-

sponding to the right-hand side in (3.3)–(3.4). In order to evaluate F1(u
(k)

1,hp
,u
(k)

2,hp
) and

F2(u
(k)

1,hp
,u
(k)

2,hp
) in (3.3)–(3.4), the matrices Ji and Gi from (3.11)–(3.12) can be reused.
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3.3. Time discretization

A stable and high-order time discretization is achieved by applying a suitably chosen

implicit Runge-Kutta (IRK) method [3] to the system of ordinary differential equations

given by (3.14). To introduce some notation, consider a system of ODEs of the form

du

d t
= f (t,u), with u(t0) = u0 ∈ R

N .

An IRK method computes an approximation uµ+1 to the solution u(tµ+1) at time tµ+1 from

an approximation uµ at time tµ. To this end, it introduces a number of auxiliary variables

x j, j = 1, · · · , sirk, called stage values or stage vectors, at times tµ + c j∆t with time step

∆t = tµ+1 − tµ. The IRK procedure can be written in terms of the stage value increments

∆x j := x j − uµ as

uµ+1 = uµ + [∆x1 · · · ∆xsirk
]A−T

irk
birk, (3.16)

∆x i =∆t

sirk∑

j=1

ai j f (tµ + c j∆t,uµ +∆x j), i = 1, · · · , sirk, (3.17)

Eq. (3.16) expresses uµ+1 as an update to uµ in terms of the stage value increments

∆x j, j = 1, · · · , sirk. Eq. (3.17) describes the system of equations to be solved to com-

pute the stage value increments. An IRK method is fully characterized by the parameters

Airk = [ai j]i, j=1,··· ,sirk
, birk = [b1 · · · bsirk

]T and cirk = [c1 · · · csirk
]T . Some example IRK pa-

rameters are given in [12]. In the present paper we will apply the popular class of Radau

IIA fully implicit Runge-Kutta methods. Note that a one-stage Radau IIA IRK method is

equivalent to a backward or implicit Euler time discretization.

Applying an IRK time discretization to the system (3.14) introduces at every time tµ,

sirk additional unknowns. Hence, at every time step µ and Newton step k, a system of

2NQsirk unknowns results. We group the unknowns together in a long vector x, where the

stage vector increments of δ(k)(tµ) are numbered first along the type of chemical particle,

then along the random dimension, next along the spatial dimension and finally according

to the IRK stages. The system (3.17) for the stage vector increments x then becomes

�
I2 ⊗ C1 ⊗M ⊗

�
Isirk
+∆t eAirk

�
+∆tK ⊗ bAirk+∆t

�
κ f 0

0 κ2

�
⊗ C1 ⊗M ⊗ Airk

+ κA∆t




Z∑

i=1

G (k)(cs1
)⊗ Airk(:, 1) · · ·

Z∑

i=1

G (k)(csirk
) ⊗ Airk(:, sirk)


 P

!
x = b. (3.18)

In (3.18), the matrices eAirk, bAirk ∈ R
sirk×sirk are respectively defined as

eAirk :=
�
er(tµ + c1∆t)Airk(:, 1) · · · er(tµ + csirk

∆t)Airk(:, sirk)
�

,

bAirk :=
�
br(tµ + c1∆t)Airk(:, 1) · · · br(tµ + csirk

∆t)Airk(:, sirk)
�

.
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The vector b ∈ R2NQsirk denotes the right-hand side. The matrix P ∈ R2NQsirk×2NQsirk per-

mutes the columns of the matrix that it is multiplied with, in such a way that consecutive

IRK stages are grouped together in blocks of sirk columns. The notation Airk(:, j) is used to

select the jth column of Airk. Matrix G (k)(cs j
) ∈ R2NQ×2NQ is defined by (3.15), where the

time-dependent matrices are evaluated at t = tµ + c j∆t for stage vector increment xi, j ,

corresponding to random unknown i and IRK stage j. For example, the elements of matrix

J
(k)(c j)

i
∈ RN×N correspond to

J
(k)(c j)

i
(m, n) :=

∫

D

ŵ
(k)(c j)

i
(x)sm(x)sn(x)d x, m, n = 1, · · · , N ; i = 1, · · · , Z ,

ŵ
(k)(c j)

i
(x) :=

Q∑

c=1

Q∑

q=1

�
û
(k)
1,c (x , t) + xi, j(x)

��
û
(k)
2,q(x , t) + xi, j(x)

�
〈ΨcΨqΨi〉. (3.19)

In (3.19), the orthonormality of the polynomials Ψq is already taken into account. Matrix

G
(k)(c j)

i
is defined similarly using (3.12). The Newton update δ(k) at time tµ+1 and Newton

step k is obtained by evaluating (3.16) based on the solution x of (3.18).

4. An algebraic multigrid solver

In every Newton iteration, a large algebraic system is to be solved. This system is

typically ill conditioned due to a poor conditioning of the stiffness matrices K j,i, j = 1,2

and i = 1, . . . ,S j . Previous studies of stochastic parabolic problems [23] showed that

efficient and robust multigrid algorithms can be constructed for algebraic systems resulting

from a combined stochastic Galerkin finite element and implicit Runge-Kutta discretization.

In this work, these multigrid algorithms are extended to discretized systems of stochastic

PDEs, e.g., given by the high-dimensional algebraic system (3.18). Since we consider

problems discretized on a highly unstructured spatial finite element grid, only the algebraic

variant of multigrid (AMG) [27] is used. That is, prolongation and restriction operators

are constructed during a setup phase [28].

Applying AMG to a system of PDEs typically requires important modifications to the

construction of the multigrid hierarchy and operators in order to maintain the fast con-

vergence of AMG for scalar PDEs [28]. One usually discerns three different strategies for

extending AMG to systems of PDEs: the variable-based, unknown-based and point-based

AMG approaches. Each strategy is based on a particular grouping of the unknowns. The

former applies AMG for scalar PDEs unchanged to a discretized system of PDEs and typi-

cally is not very efficient. The unknown-based approach requires a weak coupling between

the different unknown solution functions. The point-based approach requires that all un-

knowns functions are discretized on the same spatial grid.

The stochastic system of PDEs (2.5) contains two unknown functions, u1(x, t, y) and

u2(x , t, y), discretized on the same finite element grid. We will consider therefore a point-

based AMG solution method. Below an overview is given of the multigrid components

required for the proposed multigrid solver.
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4.1. Smoothing operator

We will consider a point-oriented relaxation method. This approach is known to be

effective for deterministic reaction-diffusion models [4]. For the stochastic model (2.1),

this corresponds to a (2Qsirk × 2Qsirk)-block Gauss-Seidel smoother. At every collective

Gauss-Seidel iteration, N systems of size (2Qsirk × 2Qsirk) need to be solved, one for each

spatial node n. Since both Airk and the sum
∑Z

i=1 C i are dense matrices - the latter is

proven in [13] - these block systems are entirely dense.

4.2. Multigrid hierarchy and transfer operators

The multigrid coarsening is performed only on the spatial discretization so that all

2Qsirk unknowns per spatial node are transferred simultaneously to a coarser level. As-

suming that the mean stochastic diffusion coefficients in (2.5) are equal up to a constant

factor - which, in practice, is quite often the case - then this also holds for the mean stiff-

ness matrices K1,1 and K2,1. This motivates the use of a multigrid hierarchy for K1,1 as a

basis for a multigrid hierarchy for the discretized stochastic two-particle problem. Let P be

the AMG prolongation operator derived for K1,1. One can construct the prolongation P
and restriction operator R for the system (3.18) as

P = I2Q ⊗P⊗ Isirk
and R = I2Q ⊗P

T ⊗ Isirk
.

The Galerkin coarse grid operator AH for the Gray-Scott reaction model equals

AH = I2 ⊗ C1 ⊗PMP
T ⊗

�
Isirk
+∆t eAirk

�

+∆t

� ∑S1

i=1 Ci ⊗PK1,iP
T 0

0 C1 ⊗PK2,1P
T +

∑S2

i=2 Ci+S1−1 ⊗PK2,iP
T

�
⊗ bAirk

+∆t

�
κ f C1 0

0 κ2C1

�
⊗PMP

T ⊗ Airk

+ κA∆t




Z∑

i=1


 C i ⊗PG

(k)(c1)

i
P

T C i ⊗PJ
(k)(c1)

i
P

T

−C i ⊗PG
(k)(c1)

i
P

T −C i ⊗PJ
(k)(c1)

i
P

T


 . . .

Z∑

i=1


 C i ⊗PG

(k)(csirk
)

i
P

T C i ⊗PJ
(k)(csirk

)

i
P

T

−C i ⊗PG
(k)(csirk

)

i
P

T −C i ⊗PJ
(k)(csirk

)

i
P

T


⊗ Airk(:, sirk)


 P.

Since the multigrid hierarchy does not depend on the implicit Runge-Kutta discretization

or the Newton iteration, the AMG setup needs to be performed only once, independent of

the number of time or Newton steps.

5. Implementation aspects

5.1. Matrix formulation and storage

System matrix. The huge algebraic system matrix (3.18) resulting from a stochastic

Galerkin discretization is typically never constructed explicitly [25]. Only the separate
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building blocks are stored in sparse matrix format. As a consequence, for every matrix-

vector multiplication or smoothing iteration, the system matrix needs to be assembled

on the fly. This increases the computational cost, especially due to iterative assembly of

the Zsirk linearized reaction matrices resulting from the Gray-Scott reaction (2.2)–(2.3).

In [22], the computational cost of a matrix-vector multiplication is compared in the two

cases in which the system matrix is stored either as a whole or in parts.

When the system matrix is stored as a whole, the memory cost equals approximately

Q2s2
irk

times the cost of storing a deterministic discretization matrix. The above suggested

storage format requires storing only (S1+S2+2Z)sirk deterministic discretization matrices,

where Z = Q̃Q with Q̃≪ Q [22]. Note that in the case of parallel computing, storing the

system matrix as a whole may become a better option.

Matrix formulation. In order to implement block relaxation operations and matrix-vector

multiplications in a cache efficient way, the linear system (3.18) can be rewritten as a sys-

tem of matrix equations, as explained in [23] for the discretization of a time-dependent

stochastic diffusion problem. The unknown vector x and right-hand side b correspond then

respectively to the multivectors X , B ∈ RN×2Qsirk . This storage format provides an easy ac-

cess of the unknowns per spatial point: they are given by a row of X . The 2Qsirk unknowns

per row are ordered first per physical unknown, then per stochastic unknown and finally

per IRK stage. This leads to an easy distinction between the physical unknown functions

u1(x , t, y) and u2(x , t, y).

5.2. Block smoothing

At every smoothing step, N systems of size 2Qsirk × 2Qsirk need to be inverted. Since

these local systems are entirely dense, one possibility is to factorize the block systems

in advance so that at every smoothing iteration only back substitutions need to be per-

formed. This factorization has to be done at every Newton and time discretization step.

This approach however rapidly becomes too expensive from memory cost point of view, for

realistic values of N and Q. Therefore, the block systems will be solved at every smooth-

ing iteration directly with SuperLU [5]. Alternative smoothing methods are proposed in

Section 5.3.

5.3. Krylov preconditioning

The AMG method developed in Section 4 can be used stand-alone or as preconditioner

for a Krylov method. Due to the non-symmetry of the Airk-matrix, BiCGStab is applied for

the Krylov acceleration. The computational cost of the multigrid method is dominated by

the cost of the matrix-vector multiplication and smoothing operations, which can become

very expensive due to the storage format, as discussed above. Cheaper Krylov precondition-

ers with comparable convergence properties can however be constructed. Their efficiency

will be demonstrated numerically in Section 7.
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5.3.1. Multigrid for stochastic diffusion problems

In the case of reaction-diffusion problems with a dominant diffusion term, multigrid for

time-dependent, linear stochastic diffusion problems [23] can be used as preconditioner

for the linearized algebraic systems. The multigrid preconditioner is constructed simi-

larly to the multigrid method described in Section 4. It considers as algebraic system the

system (3.18) with all matrices due to reaction removed. The residual computation and

smoothing operator therefore do not need to loop over the reaction matrices. This results

in a lower computational and memory cost than the AMG method of Section 4.

5.3.2. Multigrid with modified smoother

Alternatively, the multigrid method from Section 4 with a modified smoother is used as pre-

conditioner. The high computational cost of the collective smoother is reduced by omitting

any linearized reaction matrices in the smoother. That is, a block smoother for a stochastic

Galerkin and implicit Runge-Kutta discretization of a time-dependent diffusion problem is

applied as relaxation method. Note that this AMG preconditioner is not convergent when

used stand-alone.

5.4. Computation of Gray-Scott Jacobian matrices

The construction of Gray-Scott linearized reaction matrices of the form (3.11)–(3.12)

can be very expensive in case of large N and Q. This cost is reduced by employing

known information about the precise sparsity structure. Consider, for example, the ma-

trix J
(k)

i
(t) (3.11), evaluated at time t̂ with ŵ

(k)

i
defined by (3.9). The (m, n)-th element

of this matrix equals

J
(k)

i
( t̂)(m, n) :=

Q∑

c=1

Q∑

q=1

〈ΨcΨqΨi〉

∫

D

û
(k)
1,c (x , t̂)û

(k)
2,q(x , t̂)sm(x)sn(x)d x . (5.1)

From the sparsity structure of matrix C i (3.13), as detailed in [9], it follows that many

scalars 〈ΨcΨqΨi〉 in (5.1) are zero. Denote by nz(c) the number of nonzero elements in row

c of matrix C i , with corresponding vector of column indices cnc . The double summation

in (5.1) can then be rewritten as

J
(k)

i
( t̂)(m, n) :=

Q∑

c=1

nz(c)∑

q=1

〈ΨcΨcnc(q)
Ψi〉

∫

D

û
(k)

1,c
(x , t̂)û

(k)

2,cnc(q)
(x , t̂)sm(x)sn(x)d x. (5.2)
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After representing both û
(k)
1,c and û

(k)

2,cnc(q)
in (5.2) with a spatial finite element discretization,

we have that

J
(k)

i
( t̂)(m, n) :=

Q∑

c=1

nz(c)∑

q=1

〈ΨcΨcnc(q)
Ψi〉

N∑

r=1

N∑

ℓ=1

û
(k)
1,cr( t̂)û

(k)

2,cnc(q)ℓ
( t̂)

×

∫

D

sr(x)sℓ(x)sm(x)sn(x)d x, (5.3)

where û
(k)
1,cr

and û
(k)

2,cnc(q)ℓ
are the coefficient functions of the finite element representation

of the functions û
(k)
1,c and û

(k)

2,cnc(q)
, corresponding to node r and ℓ, respectively. The cost of

evaluating the double summation over N in (5.3) becomes excessively large for practical

values of N . Since the piecewise linear nodal basis functions sn(x) are nonzero on only a

small part of the domain D, this information can be used to reduce the computational cost.

The sparsity pattern of, e.g., the mass matrix M reveals which nodal basis functions, sr and

sℓ, do not overlap. Therefore, we can rewrite (5.3) as

J
(k)

i
( t̂)(m, n) :=

Q∑

c=1

nz(c)∑

q=1

〈ΨcΨcnc(q)
Ψi〉

N∑

r=1

nzM (r)∑

ℓ=1

û
(k)
1,cr( t̂)û

(k)

2,cnc(q)cnM
r (ℓ)
( t̂)

×

∫

D

sr(x)scnM
r (ℓ)
(x)sm(x)sn(x)d x,

where nzM (r) is the number of nonzero elements of row r in matrix M , and cnM
r contains

the corresponding indices of the nodal basis functions.

Remark 5.1. When the reaction model R in (2.1) contains quadratic nonlinearities instead

of the cubic terms in (2.2)–(2.3), the construction of the linearized reaction matrices in-

volves only one random field instead of a product of two random fields as in (3.7)–(3.8).

Therefore, a similar construction procedure is not required in the quadratic case. This also

means that a quadratic nonlinear problem results typically in a lower computational cost

than a cubic problem.

6. Bio-engineering application

We consider the conversion of starch into sugars in a growing apple. The physical un-

knowns u1 and u2 in (2.1) represent the concentrations of two hormones U and V which

control the sugar production process in an apple. The identification of the precise hor-

mones is still the subject of ongoing research, see, e.g., [26].

The 3D geometry, a horizontal and vertical cut, and the wire frame model are illus-

trated in Fig. 1. The model consists of four different subdomains. The small black spots

represent the seeds; typically 5 to 10 seeds are present in the apple. The seeds are posi-

tioned inside the ovary of the apple. The ovary is part of the core or pith of receptacle. The
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X
Y

Z

Figure 1: Computer model of an apple; verti
al and horizontal 
ut of the apple model.
large remaining part of the apple up to the skin of the apple is the cortex of receptacle, i.e.,

the fleshy tissue or apple flesh. These four different regions are characterized by different

material properties. The boundary of the domain corresponds to the skin of the apple.

Growth function for apples. Experiments have shown that the mass of apples follows

a logistic growth curve with maximum growth rate α. Assuming a constant apple density,

this logistic trend applies to the volume of an apple. From the relation between the volume

and radius of a spherical object, the evolution of the boundary, r0r(t), of an apple can be

deduced. The growth function r(t) is then given by

r(t) =
1

�
(1− β3)exp(−αt) + β3

� 1

3

, (6.1)

with β = r0/r∞, r0 the initial apple radius, i.e., radius at time t = 0, and r∞ the final,

stationary, apple radius. In the numerical experiments, the parameters of (6.1) are set to

α= 0.048, r0 = 3.5 cm and r∞ = 5 cm.

Initial condition. At time t = 0, a particle of substance U is released from the seeds:

u1(x , 0, y) =

¨
1/ns, x ∈ Dseeds,

0, x /∈ Dseeds,
(6.2a)

u2(x , 0, y) = 1− u(x , 0, y), (6.2b)

with ns the number of seeds in the apple. In order to avoid Gibbs phenomena due to a

discontinuous initial condition as in (6.2), a smooth approximation to (6.2) is applied at
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time tinit > 0,

u1(x , tinit, y) =
1

ns

ns∑

c=1

erfc(‖x − x seedc
‖2)

2
p

âtinit

, (6.3)

where â is a constant representing the mean diffusion coefficient, nseeds equals the number

of seeds, and x seedc
corresponds to the coordinates of the center of seed number c. The

numerical results will be based on â = 0.04 and tinit = 0.1. The initial condition (6.3) is

based on a 1D diffusion solution, where the denominator 2
p

âtinit expresses how far the

concentration propagates in one dimension by diffusion at time tinit. Since the 3D model is

nearly axisymmetric, such an extension of a 1D solution is suitable as a rough approximate

initial solution.

Random coefficients. The diffusion coefficients a1 and a2 in (2.1) are modelled as piece-

wise constant random fields, thereby expressing the heterogeneity of the apple tissue and

core. In particular, the following setup is used in the numerical tests:

a1 =





0.04ξ1,

0.035ξ2,

0.032,

0.03,

and a2 =





0.02ξ3 x ∈ Dtissue,

0.015ξ4 x ∈ Dcore,

0.012 x ∈ Dovary,

0.01 x ∈ Dseeds.

The random variables ξ1, · · · ,ξ4 are independent and lognormally distributed, based on

zero-mean Gaussian variables with standard deviation 0.1. The dimensionless Gray-Scott

reaction coefficients (2.2)–(2.3) are assumed to be deterministic and equal to κA = 50,

κ2 = 3 and κ f = 2. Figs. 2–4 illustrate the time evolution of the mean and standard

deviation of the concentrations u1 and u2 using these configurations.
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(b) evolution of the standard deviation in timeFigure 2: Solution of the Gray-S
ott rea
tion model (2.1), where the di�usion 
oe�
ients a1 and a2are ea
h modeled by two independent lognormal random variables. The problem is dis
retized with aspatial �nite element mesh with 44581 nodes, a �rst-order Hermite expansion and an impli
it Euler timedis
retization.
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0.0412 0.52 0.998

mean u1 after t = 2 days

0.0295 0.519 1.01

mean u1 after t = 2 daysFigure 3: Verti
al and horizontal 
ut of the mean of u1. The same 
on�guration as in Fig. 2 is used.

0 0.043 0.086

standard deviation u2 after t = 2 days

0 0.0566 0.113

standard deviation u2 after t = 2 daysFigure 4: Verti
al and horizontal 
ut of the standard deviation of u2 (same 
on�guration as in Fig. 2).
7. Numerical results

In this section, the performance and convergence properties of the various multigrid

solution and preconditioning methods proposed in the previous sections are illustrated

numerically. The Gray-Scott reaction model is solved on the 3D apple domain depicted in

Fig. 1, using the configurations described in Section 6.

Unless stated differently, multigrid F -cycles will be applied, with 3 pre-smoothing and 2

post-smoothing iterations. In order to study the multigrid convergence behavior in depth,

the linearized equations are solved up to machine precision, i.e., until the relative residual

‖r‖/‖b‖ is smaller than 10−14. The iteration counts and solution times given are averaged

over multiple Newton and time steps. The time discretization uses as time step ∆t = 0.02

day (about 0.5h). The computations are performed on a 2.66 GHz Intel Xeon X5550 8-core

machine with 32 GByte RAM.
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ounts and solution time (in se
onds) when solving linearized systems ofthe form (3.18) with BiCGStab pre
onditioned by the multigrid method des
ribed in Se
tion 4. Thegeometry and model parameters are des
ribed in Se
tion 6. A Hermite sto
hasti
 dis
retization de�nedon 4 random variables is applied.
Spatial nodes Polynomial order IRK stages 2Qsirk iterations time

11 799 2 2 60 7.5 424

11 799 3 2 140 7.5 2514

24 477 1 3 30 11.5 231

24 477 2 2 60 12.0 1204

24 477 3 2 140 12.0 9243

43 393 1 2 20 11.7 259

43 393 2 2 60 11.8 2095

7.1. Multigrid convergence properties

7.1.1. Multigrid convergence properties

First, we verify the robustness properties of the multigrid method presented in Section 4 by

solving the linearized systems (3.18) for different spatial, stochastic and time discretiza-

tion parameters. Table 1 illustrates the multigrid convergence properties. For different

configurations of the discretization, a similar number of iterations results. This suggests

that the proposed multigrid method has so-called optimal convergence properties, i.e.,

that the convergence rate is independent of the spatial, stochastic and time discretization

parameters.

7.1.2. Alternative multigrid preconditioners

The large computational cost of multigrid, as illustrated in Table 1, is caused to a large

extent by the expensive block smoothing iterations. At every smoothing iteration, N blocks

of size (2Qsirk× 2Qsirk) have to be inverted. Alternatively, one could also construct a block

relaxation method with blocks of size (2sirk × 2sirk) in order to reduce the computational

cost. The IRK unknowns for u1 and u2 are then updated simultaneously. In one iteration of

the (2sirk × 2sirk) block smoother, NQ systems of size (2sirk × 2sirk) need to be solved, one

for each spatial and stochastic unknown. Moreover, since the system matrix is not stored

as a whole in memory, the block systems have to be re-assembled during every smoothing

iteration. The computational cost of assembling the block systems is reduced by omitting

the reaction matrices in the smoothing operations. This motivates the alternative Krylov

preconditioners discussed in Section 5.3. The performance of these different multigrid

preconditioners is compared in Table 2.

Table 2 shows that the alternative multigrid preconditioners from Section 5.3 effec-

tively reduce the total solution time while maintaining a similar convergence rate to the

original multigrid method proposed in Section 4. A (2sirk× 2sirk) block relaxation method

results in a higher computational cost than a (2Qsirk × 2Qsirk) block smoother. This indi-

cates that the cost of assembling the block systems possibly dominates the cost of solving
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the block systems at every smoothing iteration.

7.1.3. Convergence properties of alternative multigrid preconditioners

Table 2 shows that the multigrid preconditioner A (see Section 5.3) results in the lowest

total solution time. In order to verify the robustness of the preconditioner, the experiments

from Table 1 are repeated for this multigrid preconditioner, see Table 3. On average, a

robust convergence behavior is maintained.

7.2. Alternative reaction model

7.2.1. Quadratic reaction model

In order to check the robustness of the proposed multigrid methods, the methods are

applied to an alternative reaction model. We consider the following, so-called competing

species, quadratic reaction model:

R1(u1,u2) = ε1u1 − ς1u2
1 −χ1u1u2, (7.1)

R2(u1,u2) = ε2u2 − ς2u2
2 −χ2u1u2, (7.2)

where ε1, ε2, ς1, ς2, χ1 and χ2 are positive reaction constants. In the numerical experi-

ments, we will perturb the diffusion coefficients by 8 random variables:

a1 =





0.04ξ1,

0.035ξ2,

0.032ξ3,

0.03ξ4,

and a2 =





0.02ξ5 x ∈ Dtissue,

0.015ξ6 x ∈ Dcore,

0.012ξ7 x ∈ Dovary,

0.01ξ8 x ∈ Dseeds.

The random variables ξ1-ξ8 are independent and lognormally distributed, based on zero-

mean Gaussian random variables with standard deviation 0.1. The reaction coefficients ε1

and ε2 are random variables, uniformly distributed on [0.9,1.1] and [0.675,0.825]. The

other reaction coefficients are constant and given by ς1 = 1, ς2 = 1, χ1 = 1 and χ2 = 0.5.

Fig. 5 shows the evolution of the statistics of u1 and u2 in time. The same initial conditionTable 2: Average iteration 
ounts and and solution time (in se
onds) when solving systems of theform (3.18) with BiCGStab pre
onditioned by one of the multigrid methods des
ribed in Se
tions 4and Se
tion 5.3. A spatial dis
retization of 24 477 nodes is used, together with a se
ond-order Hermitesto
hasti
 dis
retization de�ned on 4 random variables and a Radau IIA IRK dis
retization of order 3.
Block size smoother Multigrid variant iterations time

(2Qsirk× 2Qsirk) original (see Section 4) 12.0 1204

alternative A (see Section 5.3) 11.9 282

alternative B (see Section 5.3) 12.7 471

(2sirk× 2sirk) original (see Section 4) 12.1 5584

alternative A (see Section 5.3) 11.7 542

alternative B (see Section 5.3) 12.5 753
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ounts and solution time (in se
onds) when solving linearized systems ofthe form (3.18) with BiCGStab pre
onditioned by the multigrid pre
onditioner A (see Se
tion 5.3). AHermite sto
hasti
 dis
retization de�ned on 4 random variables is applied.
Spatial nodes Polynomial order IRK stages 2Qsirk iterations time

11 799 2 2 60 8.9 102

11 799 3 2 140 8.7 428

24 477 1 3 30 10.8 85.6

24 477 2 2 60 11.9 282

24 477 3 2 140 11.9 1991

43 393 1 2 20 11.8 123

43 393 2 2 60 12.2 534
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(b) standard deviation u1 and u2Figure 5: Solution of the sto
hasti
 two-parti
le model (2.1) with 
ompeting spe
ies rea
tion (7.1)�
(7.2) and 10 random variables. A spatial dis
retization with 11 799 nodes, a 2nd order Hermite-Legendreexpansion and an impli
it Euler time dis
retization are applied.
and geometry as described in Section 6 were used. The implicit Runge-Kutta time step

equals ∆t = 0.1 day for all experiments in this section.Table 4: Average iteration 
ounts and solution time (in se
onds) when solving linearized systems of theform (3.18), where the Gray-S
ott rea
tion is repla
ed by the linearization of the quadrati
 rea
tion (7.1)�
(7.2). A Hermite-Legendre sto
hasti
 dis
retization is applied.

Spatial nodes Polynomial IRK 2Qsirk BiCGStab–AMG AMG prec B

order stages iter time iter time

8 lognormal random variables

11 799 3 1 330 15.4 26535 17.1 6472

24 477 2 3 270 16 11013 16 7813

43 393 2 2 180 15.8 11075 16.5 4684

8 lognormal and 2 uniform random variables

11 799 3 1 572 14.3 67292 16.9 14612

24 477 2 2 264 16 13830 17.3 4623

43 393 2 1 132 15.9 9769 17.4 3103
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Remark 7.1. The linearization of the quadratic model results in an expansion with only Q

linearized terms instead of the Z = (L + 2P)!/(L!(2P)!) terms in the Gray-Scott case, see

(3.14). The special procedure for constructing the linearized reaction matrices presented

in Section 5.4 is therefore not needed. As a consequence, the computational and memory

cost of this quadratic reaction model are substantially lower than in the cubic Gray-Scott

reaction case for problems with the same number of unknowns per spatial point.

7.2.2. Multigrid convergence properties

Table 4 presents the iteration counts and solution time when solving the linearized sys-

tem (3.18), based on the quadratic reaction terms (7.1)–(7.2), for various configurations

of the discretization parameters. When a model with only 8 random variables is consid-

ered, the reaction coefficients ε1 and ε2 are constant and equal 1 and 0.75, respectively.

Results for both the multigrid method of Section 4 and the multigrid preconditioner B in

Section 5.3 are given. No results for preconditioner A in Section 5.3 are shown, since

for this reaction model, the convergence rate of BiCGStab with preconditioner A is un-

satisfactory. Preconditioner B succeeds in reducing the computational cost of the original

multigrid method substantially, without deterioration of the multigrid convergence rate.

By comparing the iteration counts corresponding to different discretization sizes we find

that the good multigrid convergence properties shown in Section 7.1 also hold for this

alternative reaction model.

8. Conclusions

This paper presents an algebraic multigrid method to solve the high-dimensional alge-

braic systems that result from a stochastic Galerkin finite element discretization of a system

of nonlinear, stochastic reaction-diffusion problems. Numerical experiments indicate that

the proposed method has very good and robust convergence properties. In order to check

the dependency of the convergence results on the reaction model, two different reaction

models were tested.

The computational cost of the point-oriented algebraic multigrid solver may become

excessively large due to the iterative assembly and inversion of local systems in the block

relaxation method. To alleviate this problem, cheaper multigrid preconditioners were pro-

posed. These succeed in a substantial reduction of the computational cost while maintain-

ing a similar convergence behavior as the original multigrid method.

The presented simulation procedure enables one to compute the concentration of chem-

ical particles in a growing apple. This simulation can be used to model the transition of

starch into sugar. In order to set up more realistic simulations, additional experiments are

needed to determine an accurate reaction model and parameters.
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