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Abstract. Iterative regularization multigrid methods have been successful applied to
signal/image deblurring problems. When zero-Dirichlet boundary conditions are im-
posed the deblurring matrix has a Toeplitz structure and it is potentially full. A crucial
task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels
which can be exploited to obtain fast computations. The smoother has to be an iterative
regularization method. The grid transfer operator should preserve the regularization
property of the smoother. This paper improves the iterative multigrid method proposed
in [11] introducing a wavelet soft-thresholding denoising post-smoother. Such post-
smoother avoids the noise amplification that is the cause of the semi-convergence of
iterative regularization methods and reduces ringing effects. The resulting iterative
multigrid regularization method stabilizes the iterations so that and imprecise (over)
estimate of the stopping iteration does not have a deleterious effect on the computed
solution. Numerical examples of signal and image deblurring problems confirm the
effectiveness of the proposed method.
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1. Introduction

Signal and image deblurring is an important task with many applications [18]. The
blurring may be caused by object motion, calibration errors of the devices, or random fluc-
tuations of the medium. We are concerning with restoration of blurred and noisy signals.
The blurring process can be formulated in the form of Fredholm integral equations of the
first kind. Let the function g represent the available observed blur- and noise-contaminated
signal and let the function f represent the associated (unavailable) blur- and noise-free
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signal that we would like to recover. A first kind Fredholm integral equation for a one
dimensional problem is as follows:

g(s) =

∫

Ω

K(s, t) f (t)dt, s ∈ Ω, (1.1)

where the point spread function (PSF) K is known. In our applications, K is smooth, the
integral operator is compact and its inverse is unbounded if it exists. The task of solving
(1.1) hence is an ill-posed problem [14]. In particular, we assume a spatially invariant PSF,
that is, its effect depends only on the distance between s and t, thus, with a slight abuse of
notation, we have

K(s, t) = K(s− t).

Discretization of (1.1) yields to a linear system of equations

Af= g = gblur + e, (1.2)

where A represents the blurring operator, g the available noise- and blur-contaminated sig-
nal, gblur the blurred but noise free signal, and e the noise. The matrix A is a real Toeplitz
matrix thanks to the space invariant property of the PSF. The ill-posedness of the con-
tinuous problem (1.1) implies that the matrix A is ill-conditioned and its singular values
decay to zero without significant spectral gap, thus the linear system (1.2) is refereed as a
discrete ill-posed problem [22]. This implies that straightforward solution of the linear sys-
tem (1.2) does not provide a meaningful approximation of the desired signal because of the
presence of the noise. A meaningful approximation of f can be determined by first replac-
ing (1.2) with a nearby problem whose solution is less sensitive to perturbations in the data
g. This method is called regularization. Regularization methods include Tikhonov regular-
ization or early termination of certain iterative methods [14]. Iterative methods provide
an attractive alternative to Tikhonov regularization for large-scale problems [20]. When
applied to ill-posed problems, many iterative methods exhibit a semiconvergence behavior.
Specifically, the early iterations reconstruct information about the solution, while later it-
erations reconstruct information about the noise. The iteration number can be thought of
as a discrete regularization parameter. A regularized solution is obtained by terminating
the iterations after suitably few steps when the restoration error is minimized. Parameter
selection methods such as discrepancy principle, GCV, and L-curve can be used to estimate
the termination iteration [22]. The difficulty is that these techniques are not perfect and
an imprecise estimate of the termination iteration can result in a solution whose relative
error is significantly higher than the optimal, especially if the convergence is too fast and
the restoration error curve is steep. Conjugate gradient type methods give reasonable re-
sults when applied to signal/image deblurring, but often they cut-off the high frequencies
failing to recover the edges accurately.

Multigrid methods have already been considered to solve ill-posed problems [4, 5, 10,
21, 25, 26, 31]. They are usually applied to Tikhonov like regularization methods and
no as iterative regularization methods. The first attempt in this direction was probably
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done in [11], where the authors combined an iterative regularization method used as pre-
smoother with standard coarsening. A filter factor analysis of such multigrid method was
done in [12]. A different multilevel strategy based on the cascadic approach was proposed
in [30]. These multigrid methods have the main advantage to improve the regulariza-
tion property of the smoother but this is also their main drawback. Indeed, the smoother
fails to recover edges accurately and the same holds for these multigrid strategies. To
overcome such problem nonlinear “corrections” were proposed in [15, 27]. The proposal
in [15] combines the algorithm in [11] with an Haar wavelet decomposition and a non-
linear residual correction step that preserves the edges. The proposal in [27] modifies the
cascadic multilevel methods in [30] introducing nonlinear edge-preserving prolongation
operators, which are defined via PDEs associated with total variation-type models.

This paper improves the iterative multigrid method proposed in [11] introducing a
simple and computationally cheap denoising post-smoother. Both the residual correction
in [15] and the nonlinear prolongation in [27] can be interpreted as a nonlinear post-
smoother. Our post-smoother is the classical wavelet denoising by soft-thresholding pro-
posed in [13]. The Toeplitz structure should be preserved at the coarser levels to obtain
fast computations and a simple recursion. The full-weighting and the linear interpolation
grid transfer operators correspond to linear B-spline [9] and preserve the Toeplitz structure
at the coarse levels [2, 3]. Therefore, the denoising is done on a tight frame constructed
from linear B-splines. The redundancy of tight frames is often useful in applications such
as denoising, see, e.g., [7]. Our post-smoother performs only denoising without deblurring
and so it avoids to add computationally expensive nonlinear deblurring methods, which
could require to estimate regularizing parameters also at the coarse levels. In many ap-
plications we have a standard Gaussian white noise and a good enough estimation of the
noise level is available. In such case, the threshold parameter for the wavelet denoising by
soft-thresholding can be directly obtained from the noise level without further parameter
estimations [13].

Our multigrid proposal combines an iterative regularization method (the pre-smooth
er) with a wavelet soft-thresholding denoising (the post-smoother) at different resolution
scales, the refinement function is the symbol of the grid transfer operators of the multi-
grid method. Conjugate gradient-type methods performs deblurring and denoising in the
Fourier domain, see, e.g., [20]. Therefore, our method regularizes both in the Fourier
and the wavelet domain, with the same spirit of the ForWaRD method introduced in [28].
Moreover, our multigrid proposal falls in the recent idea to separate denoising from deblur-
ring in an iterative way using two separate (efficient and existing) solvers, respectively, for
denoising and deblurring [34]. The resulting method stabilizes the iteration so that an im-
precise (over) estimate of the stopping iteration does not have a deleterious effect on the
computed solution. Furthermore, the denoising post-smoother reduces the ringing effects
and so it improves the restoration of the edges.

This paper is organized as follows. Section 2 describes multigrid methods for Toeplitz
matrices and discusses some computational issues. Section 3 deals with the multigrid reg-
ularization method introduced in [11], while Section 4 concerns with a one level framelet
denoising by soft-thresholding. Our iterative multigrid regularization method is described
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in Section 5. Numerical results in Section 6 illustrate the performance of the method.
Section 7 discusses a 2D extension of our method with application to image deblurring
problems. Finally, Section 8 summarizes conclusions and future work.

2. Multigrid methods for Toeplitz matrices

The matrix A in (1.2) is Toeplitz and square since the PSF is space invariant and we im-
pose zero Dirichlet boundary conditions. More in detail, discretizing the integral equation
(1.1) on a uniform grid and scaling by the discretization step, let a j be the values of the
function K at the grid points, for j = −n+ 1,−n+ 2, · · · , n− 1, the matrix A has the form

A=

















a0 a−1 . . . . . . a−n+1

a1 a0 a−1 . . . a−n+2
...

. . . . . . . . .
...

...
. . . . . . . . . a−1

an−1 . . . . . . a1 a0

















. (2.1)

The entries a j can be seen as the Fourier coefficients of a function z called symbol:

a j =
1

2π

∫ π

−π
z(x)e−i j xdx ,

and the matrix A in (2.1) is denoted by A= Tn(z). It is univocally identified by a vector of
2n− 1 elements and the matrix vector product can be computed in O(n log n) arithmetic
operations by fast Fourier transforms, see, e.g., [19].

The original multigrid method for Toeplitz matrices was proposed by Fiorentino and
Serra-Capizzano in [16] and was generalized by several other authors, see, e.g, [2,3,6,24].
Without loss of generality, we fix n= 2α− 1 for our convenience. We set ni = 2α−i − 1, for
i = 0, · · · , m, with m< α. The prolongation is defined as

Pi = Pni
(pi) = Tni

(pi)K
T
ni

, (2.2)

where Kni
∈ Rni+1×ni is the down-sampling matrix that picks up the entries with even

index, for i = 0, · · · , m − 1. Using the Galerkin approach, the restriction is PT
i and the

coarse matrices are Ai+1 = PT
i Ai Pi , for i = 0, · · · , m and A0 = A.

We note that the matrix A = Tn(z) in the linear system (1.2) has a symbol z that is a
trigonometric polynomial because K has compact support, even if the number of nonzero
diagonals of A can be large. We denote by Rq the set of trigonometric polynomials with
degree up q, i.e., z ∈ Rq is such that z(x) =

∑

| j|≤q a je
i j x .

Remark 2.1. Let Ai be a Toeplitz matrix, then the matrix Ai+1 = PT
i Ai Pi, where Pi is

defined in (2.2), is Toeplitz only if pi ∈ R1, i.e., Tni
(pi) is a tri-diagonal matrix.

The previous remark motivated the choice of the projectors in [3], the use of the Haar
wavelets in [15], the impossibility to apply recursively the two-grid method in [6], and
our tight frame in Section 4.
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Proposition 2.1 ([3, 16]). Let Ai = Tni
(zi) with zi a trigonometric polynomial and Pi =

Pni
(pi) defined in (2.2) with pi ∈ R1. Then the matrix Ai+1 = PT

i Ai Pi coincides with

Tn(i+1)(zi+1), where

zi+1(x) =
1

2

�

|pi|2zi

�

x

2

�

+ |pi|2zi

�

x

2
+π

��

. (2.3)

The Fourier coefficients of zi can be computed in O(ni) computing by convolution
|pi|2zi and than picking up a Fourier coefficient every two starting from the central co-
efficient of index zero, for i = 1, · · · , m and z0 = z. They are usually computed just one
time in a setup phase. If z ∈ Rq, with 1 ≪ q < n and pi ∈ R1, the bandwidth of Ai+1 is
about one half of the bandwidth of Ai.

Proposition 2.2 ([1]). Let zi ∈ Rqi
, pi ∈ R1 and zi+1 defined in (2.3). Then zi+1 ∈ Rqi+1

with qi+1 ≤ ⌊ qi

2
⌋+ 1 and qi+1 ≤ 2 for i large enough (it depends on q).

3. Multigrid regularization

The algebraic analysis of multigrid methods for Toeplitz positive definite matrices gives
sufficient conditions on pi and on the smoother to obtain a fast solver, see, e.g., [2,3,16].
In this paper the aim is different since we are concerning with regularization of discrete
ill-posed problems.

A multigrid regularization method can be obtained combining an iterative regulariza-
tion method, like some conjugate gradient-type methods, with a coarsening operator that
projects the error equation in the subspace mainly formed by low and middle frequen-
cies [11]. Grid transfer operators with such property are for instance the full-weighting
and the linear interpolation, which symbol is

p(x) =
1

2
(1+ cos(x)), (3.1)

(up to a scaling factor). The mask of the Fourier coefficients of p is

h0 =
1

4
[1 2 1], (3.2)

see, e.g., [33]. Therefore, we fix pi = p, for i = 0, · · · , m− 1.
Starting from an initial approximation x ∈ Rn of (1.2), one two-level (TL) iteration

provides a new approximation y ∈ Rn according to:

y= TL(x,g,β)

r̃ = PT
0 (g− Ax)

ỹ = Smooth�0,A1, r̃,β
�

y = x+ P0ỹ

(3.3)
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where by Smooth�0,A1, r̃,β
�

we denote the application of β steps of an iterative regular-
ization method (smoother) to the linear system

A1ẽ= r̃ (3.4)

with the null vector as initial guess.
The filter factor analysis in [12] shows that the two-level regularization strategy im-

proves the regularization properties of the Landweber method when it is applied as smoother.
Moreover, the TL algorithm saves some computational work with respect to the smoother
because the iterative regularization is applied to the linear system (3.4) that has size
(n + 1)/2 − 1. On the other hand, it does not define a regularization method accord-
ing to the definition in [14] because it does not compute the exact solution of the linear
system (1.2) when the noise level goes to zero. A multilevel method can be easily obtained
doing only few steps of the smoother (usually β = 1) and than applying recursively the
algorithm.

Usually, the TL method (3.3) and its multilevel version provide oversmoothed restora-
tions. This mainly depends on the smoother, classical iterative regularization methods
(Landweber, CGLS, etc.) converge to the minimum norm least square solution of (1.2)
and so compute oversmoothed restorations. To improve the restoration especially at the
edges, in [15] a Haar wavelet projector is combined with a residual correction in the high
frequencies. The disadvantage of this approach is that Haar wavelet computes blocky
restorations and the residual correction step requires a nonlinear regularization with a pa-
rameter that should be estimated at each level. In the multilevel regularization method
in [27] was applied a nonlinear prolongation, that we call post-smoother, that preserves
the edges by a variational approach. In this paper, we take advantage from the multilevel
strategy adding a soft-thresholding denoising in the high frequencies. In more details, at
each level we apply a soft-thresholding denoising by framelets constructed from the linear
B-spline (3.2).

4. Framelet denoising

In this section, we present some preliminaries of tight frame and denoising.
Let A ∈ Rk×n with k ≥ n. The system, denoted by A again, consisting of all of the

rows ofA is a tight frame for Rn if for every x ∈ Rn it holds

‖x‖2 =
∑

y∈A
|〈x,y〉|2, (4.1)

where 〈·, ·〉 and ‖ · ‖ = 〈·, ·〉1/2 are the inner product and the norm of finite dimensional
Euclidean spaces, respectively. Eq. (4.1) is equivalent to the perfect reconstruction formula

x =
∑

y∈A
|〈x,y〉|y.

The matrix A is called the analysis operator and its adjoint A ∗ is called the synthesis
operator. The perfect reconstruction formula can be rewritten as x = A ∗A x. Hence A
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is a tight frame if and only if A ∗A = I . We note that AA ∗ 6= I in general, unless the
system is orthogonal.

The tight frame A used in our algorithm is generated from the linear B-spline us-
ing the unitary extension principle [8]. Let p be defined in (3.1), as already noted, the
trigonometric polynomial ĥ0 = p is the refinement symbol of the linear B-spline. The two
corresponding high-pass filters (framelets)

ĥ1 =
ip
2

sin(x) and ĥ2 =
1

2
(1− cos(x)),

i2 = −1, satisfy the condition of the unitary extension principle

2
∑

k=0

|ĥi(x)|2 = 1 and
2
∑

k=0

ĥi(x)ĥi(x +π) = 0

for x ∈ [−π,π]. The corresponding masks are

h0 =
1

4
[1, 2, 1], h1 =

p
2

4
[1, 0, −1], h2 =

1

4
[−1, 2, −1].

In the following, we derive A from the masks associated with the previous framelet sys-
tem. Imposing zero Dirichlet boundary conditions A ∗A 6= I , thus we impose Neumann
(symmetric) boundary conditions obtaining

H0 =
1

4

















3 1 0 . . . 0
1 2 1

.. . . . . . . .
1 2 1

0 . . . 0 1 3

















, H1 =
1

4

















1 −1 0 . . . 0
−1 2 −1

... . . . . . .
−1 2 −1

0 . . . 0 −1 1

















,

H2 =
1

4

















−1 1 0 . . . 0
−1 0 1

.. .
. . .

. . .
−1 0 1

0 . . . 0 −1 1

















.

In our algorithm we do not use a multilevel framelet system because the different resolu-
tion scales are already included in our multigrid algorithm, the grid transfer operator is the
refinement mask (low-pass filter). Hence, we filter the noise only in the high frequencies
of the current grid without apply a multilevel denoising and our analysis operator is

A =






H0

H1

H2






.
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The denoising in the high frequencies is done by soft-thresholding. We fix the threshold
parameter

θ = c

r

2 log(n)

n
, (4.2)

for a constant c > 0. In the case of standard Gaussian white noise, the constant c can be
chosen equal to the noise level if known. We use this value of c in the computed examples
of Section 6. For x ∈ R, we denote by sgn(x) the sign of x and by x+ the positive part of
x , i.e., x+ = x if x > 0 and x+ = 0 if x ≤ 0. The soft-thresholding applied to d is

ηθ (d) = sgn(d)(|d| − θ)+, (4.3)

where the operations are intended componentwise.
In conclusion, the soft-thresholding denoising in the high frequencies is done by

y= Denoise(x,θ)






d0

d1

d2





=A x,
c0 = d0

c1 = ηθ (d1)

c2 = ηθ (d2)

, y=A ∗






c0

c1

c2





 .
(4.4)

5. The multigrid-framelet algorithm

In this section we modify the multigrid regularization method described in Section 3
adding the framelet denoising of Section 4 as post-smoother.

The multigrid regularization method in [11] does not apply the smoother at the finer
level. In this way it is possible to reduce the computational cost and at the same time to
increase the regularization property of the method. On the other hand, this implies that
it is not possible to reconstruct the minimum norm least square solution of (1.2) when
the noise level goes to zero. Therefore, in this paper we apply the pre-smoother also at
the finer level, even if a detailed convergence analysis will be subject of future work. The
method in [11] was introduced for image deblurring problems showing that a W-cycle
iteration has about the same computational cost of the smoother applied at the finer level.
Therefore in the following, we will use its W-cycle version and we will denote is as W-REG.

To keep our method as simple as possible, we apply the V-cycle with one step of pre-
smoother, but other combination could be considered. The pre-smoother is an iterative
regularization method like Landweber, CGLS, MR-II, etc. [20]. The post-smoother is not
an iterative method but it is the framelet soft-thresholding denoising described in Section 4.
The grid transfer operators Pi are defined in (2.2), where pi = p with p defined in (3.1)
(standard coarsening), for i = 0, · · · , m− 1. From Proposition 2.2, the bandwidth of Ai+1

is about one half the bandwidth of Ai and for i large enough it is equal to five since p ∈ R1.
Therefore, the number of levels m can be fixed such that the coarse problem has size
nm = 7.
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One iteration of our iterative multigrid regularization method is defined as follows

yi =MGM(i,xi ,bi)If (i = m) Then ym = A−1
m bmElse x̃i = Smooth�xi ,Ai,bi , 1

�

ri+1= PT
i (bi − Aix̃i)

ei+1=MGM(i+ 1,0, ri+1)

x̂i = x̃i + Piei+1

yi = Denoise(x̂i,θ)

(5.1)

Given an initial guess f(0) = 0, the algorithm (5.1) generates the approximate solution

f(k+1) =MGM(0, f(k),g).

The sequence of matrices {Ai}mi=0 is computed in a setup phase in O (n) arithmetic opera-
tions.

6. Numerical results

We present some numerical examples, which illustrate the regularization properties of
our multigrid method (5.1). Comparisons with classical iterative regularization methods
used as pre-smoother and with W-REG (the multigrid method in [11]) are reported. Dif-
ferent conjugate gradient-type methods are tested to show the flexibility of our proposal.
The signal to be restored f ∈ Rn has values in [0,1] and n= 255. The matrix A represents a
Gaussian blurring operator with bandwidth equal to 59 and variance σ. The observed sig-
nal is obtained by adding a noise vector e ∈ Rn to the blurred signal gblur = Af. The noise
vector has normally distributed entries with zero mean, scaled to yield a desired noise-
level ν = ‖e‖/‖gblur‖. We assume to know the noise level ν and we fix the thresholding
parameter in (4.2) with c = ν . A quantitative comparison of the restored signals is done
computing the relative restoration error (RRE) ‖̂f− f‖/‖f‖, where f̂ is the restored signal.
The displayed restored signals provides also a qualitative comparison. All computations
were performed with MATLAB 7.0.

We consider two examples with different features. In the first example the observed
signal is slightly deteriorated, while in the second example it is affected by severe blur and
noise. Fig. 1 shows the true signal f and the observed signal g for the two examples.

Example 1. The variance of the blur is σ = 3 and the noise level is ν = 1 · 10−2.
Fig. 2 shows the RRE varying the number of iterations, for CGLS, for W-REG with CGLS
as pre-smoother, and for our multigrid with CGLS as pre-smoother (MGM). In Fig. 2 we
note the classical semi-convergence of CGLS with a minimum RRE at the iteration k∗ = 43.
Our multigrid method improves the regularization property of the smoother (CGLS) and
stabilizes the iterations, i.e., it reduces the noise amplification that occurs at the iterations
k > k∗. Indeed, the post-smoother denoising filters the noise amplified by the pre-smoother
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(a) (b)Figure 1: The dashed and solid 
urves depi
t the true and the observed signals, respe
tively. (a) Example1 (σ = 3 and ν = 1 · 10−2). (b) Example 2 (σ = 5 and ν = 6 · 10−2).
for k > k∗. This leads to a less critical estimation of the stopping iteration, which could be
over estimated without spoiling the restoration, especially if the pre-smoother has a very
steep semi-convergence. W-REG stabilizes the iterations as well, but it is not able to reduce
the ringing effects. Even if the RRE curve of our method remains flat for many iterations,
a good restoration is computed also after few iterations. Fig. 3 shows the restored signals.
Restored signals with our multigrid have lesser oscillations and a better restoration of the
edges with respect to the restored signal with CGLS and W-REG. Visually the restorations
obtained after 43 and 100 iterations of our method are about superposed (Fig. 3 (c) and
(d)). Table 1 reports the RRE of the restored signals in Fig. 3.

Figure 2: Example 1. The RRE versus the number of iteration: the dashed 
urve is CGLS, the dotted
urve is W-REG, and the solid 
urve is MGM.
Example 2. The variance of the blur is σ = 5 and the noise level is ν = 6 · 10−2. The
matrix A is symmetric, thus we consider the MR-II instead of CGLS. Fig. 4 shows the RRE
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Figure 3: Example 1. Restored signals. The dotted 
urves depi
t the true signal.Table 1: Example 1. RRE at the iteration k for CGLS, W-REG and MGM (the minimum RRE for CGLSis at the iteration k∗ = 43 while for W-REG is at the iteration k∗ = 81).
‖f(k) − f‖/‖f‖ k

CGLS 0.157 43
W-REG 0.161 43
W-REG 0.160 81
MGM 0.151 43
MGM 0.136 100

varying the number of iterations for MR-II, for W-REG with MR-II as pre-smoother, and
for our multigrid with MR-II as pre-smoother. In Figure 4 we note the classical semi-
convergence of MR-II with a minimum RRE at the iteration k∗ = 8. The convergence of
W-REG is more stable with respect to MR-II. Our method has a lower and flatter RRE curve
like in the previous example. The restored signal with our multigrid method has lesser
ringing effects and a better restoration of the edges with respect to the other methods to
MR-II also after few iterations when the RRE of the different methods is comparable (see
Fig. 5 and Table 2). Indeed, Fig. 5 (b) shows that the restoration computed after 8 or 30
iterations of MGM method are comparable. Table 2 reports the RRE of the restored signals
in Fig. 5.
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Figure 4: Example 2. The RRE versus the number of iteration: the dashed 
urve is MR-II, the dotted
urve is W-REG, and the solid 
urve is MGM.

Figure 5: Example 2. Restored signals. The dotted 
urves depi
t the true signal.Table 2: Example 2. RRE at the iteration k for MR-II, W-REG, and MGM (the minimum RRE forMR-II is at the iteration k∗ = 8 while for W-REG is at the iteration k∗ = 12).
‖f(k) − f‖/‖f‖ k

MR-II 0.229 8
W-REG 0.224 8
W-REG 0.222 12
MGM 0.223 8
MGM 0.197 30
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Figure 6: Example 3. The dashed and solid 
urves depi
t the true and the observed signals, respe
tively.Table 3: Example 3. Minimum RRE with the number of the iteration where it is rea
hed betweenbra
kets.
n MR-II W-REG MGM

127 0.212 (8) 0.204 (2) 0.188 (7)
253 0.185 (9) 0.187 (2) 0.171 (13)
511 0.188 (10) 0.179 (1) 0.171 (13)

1023 0.128 (6) 0.085 (1) 0.092 (5)

Example 3. In this example, we consider a smooth signal without sharp edges and flat
regions. Moreover, to show the scalability of our method, the same signal with a similar
deterioration is restored at different scales, i.e., different sizes. Fig. 6 shows the true and
the observed signals of size n ∈ {127,255,511,1023}. Table 3 reports the minimum RRE
for MR-II, W-REG and our MGM varying the size n of the signal. Between brackets is shown
the iteration where the minimum RRE is reached. Fig. 7 and 8 show the restored signals
for n= 255 and n= 1023 respectively. At all the different scales our method improves the
restorations obtained with MR-II and W-REG with a flatter RRE curve like in the previous
examples. Even if in this example there are not flat regions, we note that our method
reduces the unnatural oscillations close to the boundary without smooth the high picks in
the middle of the signal.
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Figure 7: Example 3. Restored signals of size 255. The dotted 
urves depi
t the true signal.
Figure 8: Example 3. Restored signals of size 1023. The dotted 
urves depi
t the true signal.

7. Image deblurring

In this section we propose a straightforward 2D extension of our algorithm. Let us
consider the bidimensional version of the first kind Fredholm equation (1.1). Assuming
a space invariant blur and imposing Dirichlet boundary conditions, the coefficient matrix
of equation (1.2) is block Toeplitz with Toeplitz blocks, that is its entries a j in (2.1) are
Toeplitz matrices instead of scalar coefficients.

To define the denoising post-smoother, we construct 2D filters by tensor product of 1D
filters. Let Hi , i = 0,1,2, be the linear B-spline filters defined in Section 4. We have nine
2D filters

Hi, j = Hi ⊗H j , i, j = 0,1,2,

where ⊗ denotes the tensor product operator. H0,0 is the only low-pass filter, while the
others are high pass filters at least in one of the two directions. The analysis operator is

A =













H0,0

H0,1
...

H2,2













.

The denoising is obtained applying the soft-thresholding (4.3) to the high frequencies.
The threshold parameter θ is chosen again according to (4.2). The algorithm (4.4) in 2D



A Multigrid Regularization Method for Toeplitz Discrete Ill-Posed problems 57Table 4: Examples 4-5. Minimum RRE with the number of the iteration where it is rea
hed betweenbra
kets.
Example 4 Example 5

CGLS 0.277 (15) 0.325 (11)
W-REG 0.277 (46) 0.325 (20)
MGM 0.267 (50) 0.315 (50)

becomes
y= Denoise(x,θ)









d0
...

d9









=A x,
c0 = d0

ci = ηθ (di)

i = 2, · · · , 9
, y=A ∗








c0
...

c9









.
(7.1)

We consider a numerical example obtained from the Regularization Tools package by
Hansen [23]. We call the function blur with the size N = 127 and the bandwidth band
= 11. We consider two examples with different blur and noise

Example 4: The variance of the blur is σ = 2 and the noise level is ν = 4 · 10−2;

Example 5: The variance of the blur is σ = 3 and the noise level is ν = 9 · 10−2.

Fig. 9 shows the true and the observed images of 127× 127 pixels.
We use CGLS as pre-smoother and we stop the iterative methods when they reach the

minimum RRE within fifty iterations. The results are reported in Table 4 and Fig. 10.
Our MGM gives the best restoration and the flattest RRE curve. Fig. 11 and 12 show the
restored image with the minimum RRE.

Figure 9: Examples 4-5. From left to right: true image, observed image of Example 4 (σ = 2 and
ν = 4 · 10−2), and observed image of Example 5 (σ = 3 and ν = 9 · 10−2).
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(a) (b)Figure 10: The RRE versus the number of iteration: the dashed 
urve is CGLS, the dotted 
urve isW-REG, and the solid 
urve is MGM. (a) Example 1 (σ = 2 and ν = 4 · 10−2). (b) Example 2 (σ = 3and ν = 9 · 10−2).

Figure 11: Example 4. Restored images.

Figure 12: Example 5. Restored images.
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8. Conclusions

In this paper, we have discussed some multilevel regularization methods with edge
preserving strategies. We have proposed an improvement of the multigrid method in [11]
adding a post-smoother framelet denoising by soft-thresholding, where the framelets are
constructed from the refinable function of the grid transfer operator (linear B-spline). Our
iterative multigrid regularization method for Toeplitz matrices combines a Fourier domain
deconvolution (the pre-smoother iterative regularization method) with a wavelet domain
denoising (the post-smoother soft-thresholding) by standard coarsening (a low-pass filter).
The iterations are stabilized so that an imprecise (over) estimate of the stopping iteration
does not have a deleterious effect on the computed solution. Moreover, the denoising
post-smoother reduces the ringing effects and the noise amplification.

Further investigations are necessary, mainly to prove that our multigrid is a regulariza-
tion method providing that it computes the minimal norm least square solution of (1.2)
when the noise level go to zero. The multidimensional case and the estimation of the
threshold parameter θ deserve a further study.

The future work could also consider other recent boundary conditions that lead to
matrix algebras if the kernel K is symmetric [29, 32]. For such classes of matrices some
fast multigrid solvers have already been developed [2] and they could be modified to
obtain an iterative regularization method. The multigrid methods for matrix algebras
preserve the same matrix structure also for high order grid transfer operators and hence
wavelet/framelet decompositions of high orders (cubic for instance) could be used. More-
over, it could be investigated the use of iterative regularization methods for L1 regulariza-
tion, like e.g. [17], as pre-smoother to improve the edge-preserving.

Acknowledgments This work was partly supported by MIUR (PRIN 2008 N. 20083KL-
JEZ).
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