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Abstract. In this paper we present a one dimensional second order accurate method to

solve Elliptic equations with discontinuous coefficients on an arbitrary interface. Second

order accuracy for the first derivative is obtained as well. The method is based on the

Ghost Fluid Method, making use of ghost points on which the value is defined by suit-

able interface conditions. The multi-domain formulation is adopted, where the problem

is split in two sub-problems and interface conditions will be enforced to close the prob-

lem. Interface conditions are relaxed together with the internal equations (following the

approach proposed in [10] in the case of smooth coefficients), leading to an iterative

method on all the set of grid values (inside points and ghost points). A multigrid ap-

proach with a suitable definition of the restriction operator is provided. The restriction

of the defect is performed separately for both sub-problems, providing a convergence

factor close to the one measured in the case of smooth coefficient and independent on

the magnitude of the jump in the coefficient. Numerical tests will confirm the second

order accuracy. Although the method is proposed in one dimension, the extension in

higher dimension is currently underway [12] and it will be carried out by combining

the discretization of [10] with the multigrid approach of [11] for Elliptic problems with

non-eliminated boundary conditions in arbitrary domain.

AMS subject classifications: 35J25, 65N06, 65N55

Key words: Elliptic equation, discontinuous coefficient, second order accuracy, multigrid, arbitrary
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Introduction

Elliptic equations with jumping coefficients across a one-codimensional interface Γ

arise in several applications. Let us mention as examples the steady-state diffusion prob-

lem in two materials with different diffusion coefficient separated by an arbitrary interface,
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the Poisson equation coming from the projection method in incompressible Navier-Stokes

equation for fluids with different density, the porous-media equation to model the oil reser-

voir, electrostatic problems, and many others. In order to close the problem, interface con-

ditions related to the jump of the solution and of the flux across the interface are included.

In all these problems the interface may be arbitrary (not aligned with a line grid) and can

change in time.

Numerous techniques have been developed to treat such problem. Interface-fitted grid

methods such as the ones based on Finite Elements Methods [3,5] are not suitable in case

of moving interface, because a re-meshing grid is needed at each time step and this makes

the computation expensive. Then an approach treating the interface embedded in a Carte-

sian grid and moving according to the velocity field of the fluid is preferred. Since the

interface may not be aligned with the grid, a special treatment is needed. The simplest

method makes use of the Shortley-Weller discretization [30], that discretizes the Laplacian

operator with usual central difference away from the interface, and makes use of a non

symmetric stencil in the points close to the interface, adding extra-grid points on Γ. While

jumping condition on the solution is straightforward to discretize on interface points, the

jump in the flux (involving the normal derivative) cannot be immediatly discretized in

more than one dimension. In fact, Shortley-Weller discretization requires that the value of

the normal derivative of the solution on both sides of the interface is suitably reconstructed

at the intersection between the grid and the interface. This approach is adopted, for ex-

ample, by Hackbusch in [20] to first order accuracy, and by other authors (see [6] and

references therein) to second order accuracy. However, the method proposed by Bramble

in [6] for second order accuracy is quite involved and not recommendable for practical

purposes.

Methods based on embedding the domain in a Cartesian grid without adding extra-

grid points are derived from the pioneering work of Peskin [26], where the Immersed

Boundary Methods is introduced to model blood flows in the heart. In that paper a source

term is localized on the the boundary and the method makes use of a discretized delta-

function, leading to a first order accuracy. A second order accurate extension to jump

coefficients is the Immersed Interface Methods, first developed by LeVeque and Li in [23].

Such method uses a six-point stencil to discretize the elliptic equation in grid points close

to the interface Γ and the coefficients of such stencil are found by Taylor expansion of

the solution. Jump conditions on the interface are then used to modify the coefficients

appearing in the equation corresponding to nodes near Γ, in such a way that the overall

discretization is second order accurate. Non-homogeneous jump conditions are allowed

on the function and on the normal flux.

Another method which achieves second order accuracy by modifying standard differ-

ence formulas was proposed by Mayo in [24] for solving Poisson or biharmonic equation

on irregular domains. Such method embeds the irregular domain in a regular region with

a Cartesian grid and discretizes the equation on the whole region, by suitable extension of

the solution outside.

In all these methods the only unknowns are the values on the grid points and the

stencil may cross the interface, leading to a quite involved procedure to reach the desired



Multigrid Methods for 1D Elliptic Problems with Discontinuous Coefficients 21

accuracy, since the derivative of the solution may jump crossing the interface and values

from the other side are used in the computation.

A rather simple method to use standard five-point stencil even close to the interface

is the Ghost-Fluid Method, introduced by Fedkiw et al. in [14]. Here the authors point

out that a two-phase problem could be reduced in two sub-problems by a multi-domain

formulation, and each sub-problem may be discretized with the same technique used to

solve a single problem with Dirichlet/Neumann boundary conditions. Such method makes

use of extra grid points (ghost points) outside the domain in order to keep unchanged

the symmetry of the stencil even for inside points close to the interface. In ghost points,

interface conditions are enforced in order to close the discrete system.

Methods based on ghost points are discussed in [16], where Gibou et al. proposed

a second-order accurate method for Dirichlet conditions on regular Cartesian grid. The

value at the ghost nodes is assigned by linear extrapolation, and the whole discretization

leads to a symmetric linear system, easily solved by a preconditioned conjugate gradient

method. A fourth order accurate method is also proposed in [17]. Other methods use

a non-regular Cartesian grid, such as in [9], where Gibou et al. present finite difference

schemes for solving the variable coefficient Poisson equation and heat equation on irregular

domains with Dirichlet boundary conditions, using adaptive Cartesian grids. One efficient

discretization based on cut-cell method to solve more general Robin conditions is proposed

by Gibou et al. in [25], which provides second order accuracy for the Poisson and heat

equation and first order accuracy for Stefan type problems.

Other approaches based on cut-cell methods obtained by a Finite Volume discretization

are presented in [22]. Cells that are cut by the boundary requires a special treatment, such

as cell-merging and rotated-cell, in order to avoid a too strict restriction of the time step

dictated by the CFL condition.

Several methods have been also proposed to model the interaction between multiphase

flows and solid obstacles, such as Arbitrary Lagrangian Eulerian (ALE) [13,15], Distribute

Lagrangian Multiplier (DLM) [18], penalization methods [2, 29]. In [8] a combination

of penalization and level-set methods is presented to solve inverse or shape optimization

problems on uniform Cartesian meshes. In [32] Zhou et al. proposed a Matched Interface

and Boundary (MIB) method for elliptic problems with sharp-edged interfaces.

In time-dependent problems requiring the solution of an elliptic problem at each time

step an iterative solver is preferred with respect to a direct problem, since a good initial

guess (the solution at the previous time step) is provided. Most iterative method for jump-

ing coefficient are based on Domain Decomposition Methods [27], either with or without

overlapping. Such methods are based on the multi-domain formulation, i.e., the problem

is split in two sub-problems and interface conditions are enforced to achieve two sub-

problems with respectively Dirichlet and Neumann boundary (coupled) conditions on the

interface/boundary. Each sub-problem is solved and the solution at the interface is used

to provide an updated right-hand side for the other sub-problem, and so on iteratively.

A drawback of this method is that association between the Dirichlet/Neumann boundary

condition and the sub-domain cannot be arbitrary (see [27, pag. 12]).

Most applications require second order accuracy in the gradient: for example, in pro-
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jection method for incompressible Navier-Stokes equation, the gradient of the pressure is

used to correct the fictitious velocity field leading it to satisfy the free-divergence condition.

Also high-order accuracy [17] may be required, for instance when turbulence and shock

interact, or high frequency wave propagation are presented in inhomogeneous media [4].

In [10] a second-order accurate discretization for elliptic problems in arbitrary domain

and mixed boundary condition is provided, together with a convergence proof for the it-

erative solver for first order accuracy. The method is based on transforming the stationary

problem into a fictitious evolutionary problem, both inside the domain and on the bound-

ary. The problem is then discretized on a regular grid using non eliminated boundary

conditions to determine the proper relaxation equation for the ghost points. The whole

procedure is made efficient by a multigrid technique, as illustrated in [11].

The present paper provides a second order discretization of the problem based on the

ghost-point method on regular Cartesian grid described in [10] and makes use of an it-

erative solver whose convergence is speeded up by a multigrid approach [11]. Interface

conditions are neither eliminated from the discrete system (they are strongly coupled and

their elimination is too hard to perform in more than one dimension) nor directly enforced

(which leads to a non-convergent iterative method): they are relaxed together with the in-

terior equations. This leads us to an iterative scheme for the set of all unknowns (internal

points and ghost points). The method works also for non-homogeneous interface condi-

tions. Although this paper provides a 1D description of the method, the generalization of

the approach in higher dimension is currently underway [12] and can be obtained in an

almost straightforward manner combining results from [10,11].

Several multigrid approaches exist in literature to treat the jumping coefficient problem

in 2D when the interface is aligned with the Cartesian grid. We mention the method

based on operator-dependent interpolation [1, 21], where the interpolation is carried out

by exploiting the continuity of the flux instead of the gradient of the solution, and the

method based on Galerkin Coarse Grid Operator [28], which makes the algebraic problem

more expensive from a computational point of view and does not take advantage from the

fact that the discrete problem comes from a continuous problem.

In our approach we use the standard interpolation operator and discretize the operator

in the coarser grid in the same way as in the fine grid, without making use of Galerkin

conditions. But, since the defect may jump crossing the interface, a separated restriction

for both sub-problems is needed, as performed in [11] for arbitrary domain with mixed

boundary condition (without jumping coefficient). This approach provides a good con-

vergence factor, comparable with ones measured for no-jumping case. We also show that

the convergence factor does not depend on the magnitude of the jump in the coefficient.

Interface conditions are relaxed, then have to be transferred to the coarse grid as well. In

one-dimensional case this task is trivial, since such conditions are just two real values that

can be copied to the coarse grid. In higher dimension interface conditions are stored in

ghost points, which can show a complex structure for arbitrary interface. The restriction

of interface condition defect can be carried out in the same manner of the restriction of

boundary condition defect described in [11] for problems with non-eliminated boundary

conditions: the defect is first extrapolated outside the domain and then transferred to the
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coarse grid in the same manner as the restriction of the defect of inside equations, i.e.,

without using values from the other side of the boundary. This work is currently underway.

The rest of the paper is divided in 3 sections. In the first section we describe the second

order accurate discretization of the model problem and the iterative scheme obtained by

the relaxation of the interface conditions. The second section is devoted to the multigrid

approach, with a care description of the transfer operators. In Section 3 some numerical

test is performed, to show the second order accuracy in the solution and in its first deriva-

tive as well. We measure also the convergence factor and compare it with the convergence

factor obtained by other methods.

1. Second order accurate discretization

In this section we obtain a second order accurate numerical method to solve an elliptic

equation with discontinuous coefficients. After introducing the model problem, we provide

a discretization and an iterative solver of the linear system. In some applications one may

be interested in second order accuracy also for the derivative of the solution. In numerical

tests of Section 3 we show that the method is second order accurate in the solution and in

its first derivative.

1.1. Model problem

Let us consider the model problem

−
d

d x

�

γ
du

d x

�

= f in Ω = [0,1], (1.1a)

u(0) = g0, u(1) = g1, (1.1b)

where the diffusion coefficient γ: [0,1] → R jumps on an interface α ∈]0,1[, i.e., is a

smooth function in [0,α[ and in ]α, 1], but may be discontinuous across α. We assume

γ > ε > 0 in all the domain. If we solve this problem by standard central differences on a

uniform grid, the accuracy of the method degrades to first order.

�

� ��
���

�

�
�

�
��� �

���Figure 1: Computational domain Ω with an arbitrary interfa
e α.
Let

uL = u|[0,α[, uR = u|]α,1], γ
L = γ|[0,α[, γ

R = γ|]α,1]

be the restriction functions of the solution and of the coefficient on the two subdomains.
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We split the problem into the following subproblems:

−
d

d x

�

γL
duL

d x

�

= f in [0,α[, (1.2a)

uL(0) = g0, (1.2b)

−
d

d x

�

γR
duR

d x

�

= f in ]α, 1], (1.3a)

uR(1) = g1. (1.3b)

In order to close the problem, we must provide an additional boundary condition for each

of uL and uR on the interface α. This additional conditions are inferred to the requirement

that the solution u and the flux γu′ are continuous across α. Introducing the jumping

operator on α

[w] = lim
x→α+

w − lim
x→α−

w,

the additional boundary conditions may be resumed as

[u] = 0,
�

γu′
�

= 0

and are called transmission conditions [27]. They can be inferred by a physical require-

ment: for instance, in steady-state diffusion problems in two materials, the temperature

and its flux are required to be continuous across α. Non-homogeneous interface conditions

may appear, for example, in presence of a delta-function on the right hand side f = f1+δα,

with f1 ∈ C0([0,1]). Precisely, the two following problems are equivalent:

−
d

d x
(γ

du

d x
) = f1 + Cδα in [0,1],

u(0) = g0, u(1) = g1,

and −
d

d x
(γ

du

d x
) = f1 in [0,α[∪]α, 1],

u(0) = g0, u(1) = g1,

[u] = 0,
�

γ u′
�

= −C .

In the following we suppose the right-hand side is a regular function in the two sub-regions,

and non-homogeneous interface conditions are allowed:

[u] = gD,
�

γu′
�

= gN . (1.4)

Such general case is relevant for some applications, for example pressure equation for

incompressible flow in presence of surface tension at the interface.
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The two subproblems (1.2) and (1.3) are then coupled on α and cannot be solved

separately. The whole problem becomes

−
d

d x

�

γL
d uL

d x

�

= f in [0,α[ , (1.5)

−
d

d x

�

γR
d uR

d x

�

= f in ]α, 1] , (1.6)

uL(0) = g0, uR(1) = g1, (1.7)

[u] = gD,
�

γu′
�

= gN . (1.8)

1.2. Discretization

Let N be an integer, h = 1/(N + 1) be the spatial step and x0, x1, · · · , xN , xN+1 be the

equally spaced grid points, with x j = j h. Let J be such that xJ ≤ α < xJ+1 (see Fig. 1). We

write J = ⌊α⌋, where ⌊·⌋ denotes the integer part. We will denote by L j[w] the quadratic

interpolant of w in nodes
¦

x j−1, x j, x j+1

©

. By uL
j [u

R
j ] we denote the component of the

numerical solution which approximates uL(x j) [u
R(x j)], while we intend

f j = f (x j), γL
j = γ

L(x j), γR
j = γ

R(x j).

Let us discretize the system (1.7). Discretizing Eq. (1.5) on nodes x1, x2, · · · , xJ using

central differences for the solution uL and linear interpolation for the coefficient function

γL, we obtain:

1

h2

�

γL

j− 1

2

�

uL
j − uL

j−1

�

+ γL

j+ 1

2

�

uL
j − uL

j+1

�

�

= f j , j = 1, · · · J , (1.9)

where

γL
j+1/2

=
1

2
(γL

j + γ
L
j+1).

In Eq. (1.9) for j = 1 the value uL
0 is given by the Dirichlet condition (1.7): uL

0 = g0. It can

be easily eliminated from (1.9), but we will leave it in the system just for simplicity. The

same applies for uR
N discretizing Eq. (1.6) in node xN .

Eq. (1.9) for j = J needs to know the values of uL and γL in node xJ+1. Since u′ and

γ are discontinuous, we cannot use respectively uR
J+1 and γR

J+1, because this may result in

a loss of accuracy, since it smears out the coefficient γ and the numerical solution itself,

while both jump on the interface. Then we need to add an additional grid point value for

the numerical solution uL(xJ+1), called ghost point value, and to extrapolate γL up to the

first ghost point xJ+1. The same argument holds for uR and γR in their ghost point xJ ,

when discretizing Eq. (1.6) in node xJ+1.

The unknowns of the numerical method are therefore the N + 4 quantities

uL
0 , · · · ,uL

J+1,uR
J , · · · ,uR

N+1. (1.10)
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This approach has been called Ghost Fluid Method and used in the context of multi-fluid

flows [14]. The two additional unknowns uL
J+1 and uR

J require two additional boundary

conditions to close the system, which are given by the transmission conditions (1.4), result-

ing in a 2×2 sub-system. We will not solve this sub-system for uL
J+1 and uR

J , but we instead

leave it in the whole linear system, which will be solved iteratively. The extrapolation for

the coefficient functions γL and γR is simple linear extrapolation:

γL
J+1 = 2 γL

J − γ
L
J−1, γR

J = 2 γL
J+1 − γ

L
J+2.

Using then central differences to discretize (1.5) and (1.6), linear and quadratic interpo-

lation to discretize respectively the two conditions (1.8), we obtain the following second

order (N + 4)× (N + 4) linear system:

uL
0 = g0, (1.11)

1

h2

�

γL

j− 1

2

�

uL
j − uL

j−1

�

+ γL

j+ 1

2

�

uL
j − uL

j+1

�

�

= f j , j = 1, · · · , J , (1.12)

�

(1− ϑ)uR
J + ϑuR

J+1

�

−
�

(1− ϑ)uL
J + ϑuL

J+1

�

= gD, (1.13)

γR
αL
′
J[u

R](α)− γL
αL
′
J−1[u

L](α) = gN , (1.14)

1

h2

�

γR

j− 1

2

�

uR
j − uR

j−1

�

+ γR

j+ 1

2

�

uR
j − uR

j+1

�

�

= f j , j = J + 1, · · · , N , (1.15)

uR
N + 1= g1, (1.16)

with γL
α and γR

α obtained by linear interpolation:

γL
α = (1− ϑ)γ

L
J + ϑγ

L
J+1, γR

α = (1− ϑ)γ
R
J + ϑγ

R
J+1

and ϑ = (α− xJ)/h ∈ [0,1].

If we apply a simple iterative method such as Gauss-Seidel or Jacobi to this linear

system, in general it will not converge, unless we solve the 2×2 sub-system of transmission

conditions, eliminating them from the whole system. This elimination is easy to perform

in one dimension, but becomes quite involved in higher dimension. Therefore, we prefer

to work with the whole linear system without eliminate transmission conditions from it,

in order to extend the method to higher dimension in a forthcoming paper [12]. Then we

have to find a different approach to solve iteratively the previous linear system. This can

be done by relaxing the transmission conditions.

1.3. Iterative method

In order to find a convergent iterative method to solve the linear system (1.11)-(1.16),

following the approach introduced in [10] we solve the associate time-dependent problem
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in the unknowns uL(x , t) and uR(x , t) for (x , t) ∈ [0,1]× (0,+∞):

uL(0, t) = g0, (1.17)

∂ uL

∂ t
= µ

�

∂

∂ x

�

γL
∂ uL

∂ x

�

+ f

�

, x ∈ [0,α[ , (1.18)

∂ uL

∂ t

�

�

�

�

�

x=α

= µN

��

γ
∂ u

∂ x

�

− gN

�

, (1.19)

∂ uR

∂ t

�

�

�

�

�

x=α

= µD

�

gD − [u]
�

, (1.20)

∂ uR

∂ t
= µ

∂

∂ x

�

γR
∂ uR

∂ x

�

+ f , x ∈]α, 1] , (1.21)

uR(1, t) = g1, (1.22)

where µ is a positive function, and µD and µN are two positive constants, that will be set

in Section 1.4 to satisfy some stability condition.

The choice of the sign of the two constants µD and µN is crucial and requires some

explanation. Roughly speaking, when replacing a vector equation F(w) = 0 for F : Rm →
R

m by ω̇ = F(ω), we have to be sure that the solution is asymptotically stable, i.e. that

λ(∇ωF) < 0. Eq. (1.20) will be used to compute uR
J , therefore the derivative of the right

hand side of Eq. (1.20) with respect to uR
J has to be negative, to ensure convergence to

equilibrium. Eq. (1.19) is used to determine uL
J+1 by a transport equation on uL(x , t).

Since xJ+1 > α the propagation speed µN γ
L associated to uL(x , t), has to be positive.

We are obviously interested in the steady-state solution and the time t represents an

iterative parameter. We observe that transmission conditions (1.19) and (1.20) can be

replaced by

∂ uR

∂ t

�

�

�

�

�

x=α

= µN

�

gN −
�

γ
∂ u

∂ x

��

,

∂ uL

∂ t

�

�

�

�

�

x=α

= µD

�

[u]− gD

�

,

because both choices lead to the same steady state conditions.

To obtain a second order accurate solution in space we are allowed to discretize first

order accurate the time derivative. Using forward Euler in time and central differences in

space for (1.18) and (1.21), we obtain (superscripts L and R are omitted):

u
(m+1)

j
= u

(m)

j
+µ j∆t






f j −
γ j− 1

2

�

u
(m)

j
− u

(m)

j−1

�

+ γ j+ 1

2

�

u
(m)

j
− u

(m)

j+1

�

h2






, (1.23)
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where j = 1, · · · , J for uL and j = J + 1, . . . , N for uR. Choosing the maximum time step

allowed by the CFL condition for diffusion equation, i.e., µ j∆t = h2/(γ j+1/2+γ j−1/2), Eq.

(1.23) becomes:

u
(m+1)

j
=

1

γ j− 1

2
+ γ j+ 1

2

�

f j h2+ γ j− 1

2
u
(m)

j−1
+ γ j+ 1

2
u
(m)

j+1

�

, (1.24)

where j = 1, · · · , J for uL and j = J + 1, · · · , N for uR. Observe that such equation is the

one obtained by applying Jacobi iteration to Eqs. (1.12) and (1.15).

Let us discretize Eq. (1.19). The time derivative is discretized by forward Euler at the

ghost point xJ+1, which is the quantity we want to compute. The jump is discretized as in

(1.14), so it is second order accurate. We obtain the iteration:

u
L,(m+1)

J+1
= u

L,(m)

J+1
+µN∆t
�

γR
αL
′
J[u

R,(m)](α)− γL
αL
′
J−1[u

L,(m)](α)− gN

�

. (1.25)

Likewise, in Eq. (1.20) we discretize the time derivative in xJ , obtaining:

u
R,(m+1)
J = u

R,(m)
J +µD∆t
�

(1− ϑ)uL,(m)
J + ϑuJ+1)

L,(m)

−(1− ϑ)uR,(m)
J + ϑu

R,(m)
J+1 + gD

�

.
(1.26)

Iterations (1.24), (1.25) and (1.26) constitute the iterative scheme to solve problem (1.1)

to second order accuracy.

1.4. Choosing constants µD and µN for transmission conditions

In (1.25) and (1.26) two arbitrary constants µD and µN appear. Following the same

argument as in [10], such constants will be chosen in order to satisfy some stability condi-

tion for the equation where they appear. This procedure is not rigorous because it does not

take into account the coupling between the equations, and does not consist in a conver-

gence proof. However, in all numerical tests we performed, the conditions we find seem to

guarantee convergence.

Constant µD is introduced in Eq. (1.20), which is just a relaxation of the jump condi-

tion. Then we require:

µD∆t < 1. (1.27)

This condition will ensure positivity, and is a factor 2 more stringent than just stability

restriction. For practical purpose, we set µD ∆t = 0.9. In order to obtain a condition on

µN , we rewrite Eq. (1.19) as follows (we have supposed for simplicity homogeneous jump

gN = 0):

∂ uL

∂ t
+µN γ

L
∂ uL

∂ x
= µN γ

R
∂ uR

∂ x
, t ∈ (0,∞). (1.28)

This is a simple convection equation with speed µN γ
L. Then a simple CFL condition for

convection equation might be

µN∆t ≤
h

γL
.
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Numerical experiments show that this condition is not enough, especially in the case

γR/γL ≫ 1. An explanation of this behavior may be that the right-hand side of (1.28)

is not stationary when the convection evolves in time, but it depends on time itself by uR.

An acceptable condition is

µN ∆t ≤
h

max
�

γL,γR
	 . (1.29)

For practical purpose we choose µN ∆t = 0.9 h/max
¦

γL,γR
©

. Numerical tests show that

conditions (1.27) and (1.29) are sufficient for guarantee convergence, but not necessary.

A more detailed analysis is in progress.

Notice that µ∆t = O (h2), µN ∆t = O (h), µD∆t = O (1). Furthermore, only the

product of the constants times ∆t enters into the conditions, therefore we may imagine

that ∆t = 1.

2. Multigrid approach

The convergence of the iterative method proposed in Sec. 1.3 is usually very slow.

To accelerate the convergence we use a multigrid strategy. To make the iteration scheme

(1.24)-(1.26) a building block for an efficient multi-grid solver, we must be sure that such

iteration (relaxation scheme) has the smoothing property, i.e. that after few steps, the error

becomes smooth (not necessarily small). Roughly speaking, the high-frequency compo-

nents of the error reduce quickly. We do not explain all multigrid features, but just what

is different from classical multigrid approach, remanding to the literature for more details

(e.g., see [7,19,31]). The iteration scheme (1.24)-(1.26) is a Jacobi-like scheme, as men-

tioned in Sec. 1.3. Jacobi scheme is not a good smoother, since high-frequency components

of the error reduce slowly. A good smoother is instead the Gauss-Seidel scheme. Then, we

use a Gauss-Seidel version of (1.24)-(1.26) as relaxation scheme, i.e.

u
L,(m+1)

j
=

1

γ j− 1

2

+ γ j+ 1

2

�

f j h2 + γ j− 1

2

u
L,(m+1)

j−1
+ γ j+ 1

2

u
L,(m)

j+1

�

, j = 1, · · · , J , (2.1)

u
L,(m+1)
J+1 = u

L,(m)
J+1 +µN∆t
�

γR
αL
′
J[u

R,(m)](α)− γL
αL
′
J−1[ũ

L](α)− gN

�

, (2.2)

u
R,(m+1)
J = u

R,(m)
J +µD∆t
�

(1− ϑ)uL,(m+1)
J + ϑu

L,(m+1)
J+1

−(1− ϑ)uR,(m)
J − ϑu

R,(m)
J+1 + gD

�

,
(2.3)

u
R,(m+1)

j
=

1

γ j− 1

2
+ γ j+ 1

2

�

f j h2 + γ j− 1

2
u

R,(m+1)

j−1
+ γ j+ 1

2
u

R,(m)

j+1

�

, j = J + 1, · · · , N , (2.4)

where in (2.2) we intend ũL such that ũL
j = u

L,(m+1)

j
for j < J + 1 and ũL

J+1 = u
L,(m)
J+1 . The

unknowns are updated in the same order reported in (1.10).

In order to explain the multigrid approach, we just describe the two-grid correction

scheme (TGCS), because all the other schemes, such as V -cycle, W -cycle, F -cycle or Full
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Multigrid cycle, can be easily derived from it (see [31, Sections 2.4 and 2.6] for more

details). Let us introduce some notation. For a grid of spatial step h, we denote:

J =

�α

h

�

, ϑ =
α

h
− J ,

S(Ωh) =
¦

wh = (w
L , wR) such that wL :

�

x0, . . . , xJ+1

	

→ R, wR :
�

xJ , . . . , xN+1

	

→ R
©

,

◦
S (Ωh) =
¦

wh = (w
L , wR) such that wL :

�

x1, . . . , xJ

	

→ R, wR :
�

xJ+1, . . . , xN

	

→ R
©

,

uh = ((u
L
j ) j=0,...,J+1, (uR

j ) j=J ,...,N+1) ∈ S(Ωh),

γh = ((γ
L
j ) j=0,...,J+1, (γR

j ) j=J ,...,N+1) ∈ S(Ωh),

fh ∈
◦
S (Ωh) such that fh(x j) = f j ,

Lh : S(Ωh)× S(Ωh)−→
◦
S (Ωh) such that

�

Lh(γh,uh)
�

j =
1

h2

�

γL

j− 1

2

�

uL
j − uL

j−1

�

+ γL

j+ 1

2

�

uL
j − uL

j+1

�

�

if j ≤ J ,

�

Lh(γh,uh)
�

j =
1

h2

�

γR

j− 1

2

�

uR
j − uR

j−1

�

+ γR

j+ 1

2

�

uR
j − uR

j+1

�

�

if j ≥ J + 1,

[ · ]Dh : S(Ωh)−→ R such that
�

uh

�D
h =
�

(1− ϑ)uR
J + ϑuR

J+1

�

−
�

(1− ϑ)uL
J + ϑuL

J+1

�

,

[ · , · ]Nh : S(Ωh)× S(Ωh)−→ R such that
�

γh,uh

�N

h = γ
R
αL
′
J[u

R](α)− γL
αL
′
J−1[u

L](α).

The linear system (1.11)-(1.16) can be resumed as follows:

Lh(γh,uh) = fh, (2.5)
�

uh

�D

h = gD, (2.6)
�

γh,uh

�N

h = gN , (2.7)

uL
0 = g0, (2.8)

uR
N = g1. (2.9)

For simplicity we assume that N + 1 = 1/h is a power of 2. The TGCS consists into the

following algorithm:

Algorithm 2.1. 1. Set initial guess uh = 0.

2. Relax ν1 times on the finest grid: for k from 1 to ν1 do (2.1), (2.2), (2.3).
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3 Compute the defects rh ∈
◦
S (Ωh), g̃D, g̃N ∈ R:

rh = fh+ Lh(γh,uh),

g̃D = gD −
�

uh

�D

h ,

g̃N = gN −
�

γh,uh

�N

h .

4 Transfer the defect rh to a coarser grid with spatial step 2h by a suitable restriction

operator

r2h = Ih
2h

�

rh

�

.

5 Solve exactly the residual problem on the coarser grid in the unknow e2h ∈ S(Ω2h)

Lh(γ2h,e2h) = r2h,
�

e2h

�D

h = g̃D,
�

γ2h,u2h

�N

h = g̃N ,

eL
0 = 0,

eR
(N+1)/2

= 0.

6 Transfer the error to the finest grid by a suitable interpolation operator

eh = I2h
h

�

e2h

�

.

7 Correct the fine-grid approximation

uh = uh+ eh.

8 Relax ν2 times on the finest grid: for k from 1 to ν2 do (2.1)-(2.3).

To complete the description of TGCS, we have just to explain the steps concerning grid

migration (steps 4 and 6).

2.1. Transfer grid operators

In this section, we describe the transfer grid operators for vertex-centered grid. Observe

that coefficients γL and γR can be transferred in an exact manner by a simple injection

operator.
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2.1.1. Restriction operator

Since such operator will act on the defect rh = (r
L
h
, rR

h
) ∈
◦
S (Ωh) (step 4), we perform the

restriction from a fine grid to a coarser grid separately for rL
h

and rR
h
. This is justified by

the fact that the defect rL
h

of the left domain may be very different (after few relaxations)

from the defect rR
h

of the right domain, especially in the case of high jumping coefficient,

i.e., max
¦

γL
α/γ

R
α,γR

α/γ
L
α

©

≫ 1. In addition, these defects are very different also from the

defects of jumping conditions g̃D and g̃N , because the operators scale with different power

of h.

Let us describe the restriction of rL
h

by the operator
�

Ih
2h

�L
(see Fig. 2). Let xJ be the

closest grid point to α from the left in the fine grid (see Fig. 1). Let x be a grid point of the

coarse grid. If x < xJ we will use the standard full-weighting restriction operator (FW):

�

Ih
2h

�L
rL

h(x) =
1

4

�

rh(x − h)L + 2 rh(x)
L + rh(x + h)L
�

, (2.10)

while if x = xJ we reduce to an upwind linear convex combination from the left direction:

�

Ih
2h

�L
rL

h
(x) =ω1 rL

h
(x)+ (1−ω1)r

L
h
(x − h), (2.11)

since in x + h only rR
h

is defined and not rL
h
. In our tests we found that ω1 = 1/2 gives

better results than ω1 = 3/4.

The operator
�

Ih
2h

�R
works in a similar manner: let xJ+1 the closest grid point to α from

the right in the fine grid. If x > xJ+1 we will use the standard full-weighting restriction

operator (FW):

�

Ih
2h

�R
rR

h(x) =
1

4

�

rh(x − h)R + 2 rh(x)
R+ rh(x + h)R
�

, (2.12)

while if x = xJ we reduce to an Upwind mean value from the left direction:

�

Ih
2h

�R
rR

h
(x) =

1

2

�

rR
h
(x)+ rR

h
(x + h)
�

. (2.13)

The whole restriction reads

Ih
2hrh =
�
�

Ih
2h

�L
rL

h ,
�

Ih
2h

�R
rR

h

�

.

In the upper part of Fig. 2 is represented the case in which we have to use (2.11) and

(2.12). The only other possible case is that we have to use (2.10) and (2.13).

2.1.2. Interpolation operator

Since such operator will act on the correction e2h = (e
L
2h

,eR
2h
) ∈ S(Ω2h) (step 4), we per-

form the interpolation from a coarse grid to a finer grid separately for eL
2h

and eR
2h

(see

middle and lower part of Fig. 2), but always using the standard linear interpolation:
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oarse grid for transfer operators. The dashed lines represent the a
tion of therestri
tion (top) and the interpolation (middle and bottom) operators.
(
�

I2h
h

�L
eL

2h
(x j) = eL

2h
(x j) if j is even,

�

I2h
h

�L
eL

2h
(x j) =

1

2

�

eL
2h
(x j−1) + eL

2h
(x j+1)
�

if j is odd,
(2.14)

(
�

I2h
h

�R
eR

2h
(x j) = eR

2h
(x j) if j is even,

�

I2h
h

�R
eR

2h
(x j) =

1

2

�

eR
2h
(x j−1) + eR

2h
(x j+1)
�

if j is odd.
(2.15)

The whole interpolation reads

I2h
h

e2h =
�
�

I2h
h

�L
eL

2h,
�

I2h
h

�R
eR

2h

�

.

Remark 1. (Coarser operator) We observe that the discrete operator L2h on the coarser

grid (step 5) is just the operator obtained discretizing directly the continuous operator in

the grid with spatial step 2h, and not the operator obtained by Galerkin condition

L2h = Ih
2h Lh I2h

h . (2.16)

The last approach, typical of algebraic multigrid, makes the algebraic problem more ex-

pensive from a computational point of view and does not take advantage of the fact that

the discrete problem comes from a continuous problem.

Remark 2. (V -cycle) The V -cycle algorithm is easily obtained from the TGCS recursively,

namely applying the same algorithm to solve the residual equation in step 5. To terminate
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the recursion, an exact solver is used to solve the residual problem when the grid achieves

a fixed level of coarsening. We denote by V (ν1,ν2)-cycle the V -cycle performed with ν1

pre-relaxations and ν2 post-relaxations.

Remark 3. (W -cycle) The W -cycle is similar to the V -cycle, with the only difference that

the residual problem is solved recursively two times instead of one (in general schemes, δ

times, but δ > 2 is considered useless for practical purposes).

3. Numerical tests

In this section we confirm numerically the second order accuracy of the discretization

of Sec. 1.2 and compute the convergence factor ρ of the multigrid approach for several

examples, to confirm the independence of ρ from the spatial step h and the magnitude of

the jumping coefficient.

Second order accuracy is gained also for first derivative of the solution, as it is shown

by the comparison between exact first derivative and the numerical derivative obtained by

central difference of the numerical solution.

In all numerical tests, we choose an arbitrary interface α ∈]0,1[ and an analytical

expression of the exact solution u = (uL,uR) and of diffusion coefficient γ = (γL,γR). Then

we reconstruct the data f , gD and gN , perform the multigrid technique, and compare the

numerical solution with the exact solution to compute the order of accuracy by the slope

of the best-fit line. In all our tests we use the following stopping criterion for the V−cycle







u
(m+1)

h
− u

(m)

h










∞







u
(m+1)

h










∞

≤ TOL.

This will ensure that the actual relative error satisfies







e
(m+1)

h










∞




eh







∞

≤ ρ
TOL

1−ρ
.

The tolerance we used is TOL = 10−6, which ensures that the error in the solution of the

algebraic system is always lower than truncation error. For each example we show a table

in which we list the errors, and the value in the third [fifth] column and i-th row of the

table indicates the accuracy order, computed as log2

�

ei−1/ei

�

, where ei is the L∞-error of

the numerical solution [derivative] indicated in the second [fourth] column and i-th row.

To compute the asymptotic convergence factor, we use the following estimate:

ρ = ρ(m) =








r
(m)

h










∞







r
(m−1)

h










∞

,

which is reliable for m large. In order to avoid difficulties related to numerical instability

due to machine precision, we will always use the homogeneous model problem as a test
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y
le 
onvergen
e fa
tor for the numeri
al test of Ex. 3.1. We use N + 2number of grid points in the �nest grid; Nc + 2 number of grid points in the 
oarsest grid.
N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.15 0.16 0.15 0.17 0.19 0.15 0.15 0.15

32 0.14 0.12 0.17 0.19 0.15 0.15 0.15

64 0.07 0.16 0.19 0.15 0.15 0.15

128 0.11 0.17 0.15 0.15 0.15

when we want to compute the asymptotic convergence factor, namely Eq. (1.1) with

f = g0 = g1 = 0 and homogeneous jump conditions, and perform the multigrid algorithm

starting from an initial guess different from zero. Since in this case we are just interested

in the convergence factor and not in the numerical solution itself (which approaches zero),

a reasonable stop criterion will be

�

�ρ(m)−ρ(m−1)
�

�

ρ(m)
< 10−2.

Several tests are performed for each example, based on the different size of the finest and

coarsest grids. The finest grid is obtained dividing the domain [0,1] into N + 1 intervals,

while the coarsest grid is obtained dividing the domain into Nc + 1 intervals.

Example 3.1. We choose (see Fig. 3)

α= 0.343,

(

uL = esin(5πx),

uR = ex2

,

(

γL = 3+ cos(5πx),

γR = 109 (10+ sin(5πx)) .

Fig. 4 shows the numerical results and the second order slope of the best-fit line for

the L∞-error of the numerical solution and its derivative. Table 1 shows the convergence

factor for different values of N and Nc.

Example 3.2. We choose (see Fig. 5)

α = 0.743,

(

uL = esin(5πx),

uR = ex2

,

(

γL = 3+ cos(5πx),

γR = 109 (10+ sin(5πx)) .

The only difference with respect to the previous example is the value of α.

Fig. 6 shows the numerical results and the second order slope of the best-fit line for

the L∞-error of the numerical solution and its derivative. Table 2 shows the convergence

factor for different values of N and Nc.

Example 3.3. We choose (see Fig. 7)

α = 0.283,

(

uL = esin(5πx),

uR = ex2

,

(

γL = 109 (10+ sin(5πx)) ,

γR = 3+ cos(5πx).
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Figure 3: We refer to Ex. 3.1. The data are 
omputed for N = 64.
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N + 1




u− uh







∞ order




u′− u′
h







∞ order

64 1.87 ·10−2 - 3.33 ·10−1 -

128 4.59 ·10−3 2.03 8.38 ·10−2 1.99

256 1.13 ·10−3 2.02 2.12 ·10−2 1.98

512 2.77 ·10−4 2.03 5.35 ·10−3 1.99

1024 6.95 ·10−5 2.00 1.34 ·10−3 2.00

2048 1.73 ·10−5 2.01 3.36 ·10−4 1.99

4096 4.48 ·10−6 1.95 8.21 ·10−5 2.03

8192 1.11 ·10−6 2.01 2.07 ·10−5 1.99Figure 4: We refer to Ex. 3.1. Left: Representation of the L∞-error of the numeri
al solution and itsderivative. The slope of the best-�t lines is respe
tively s = −2.00 and s = −2.00. Right: List of errorsand order of a

ura
y 
omputed by subsequent errors.Table 2: Measured V (1, 1)-
y
le 
onvergen
e fa
tor for the numeri
al test of Ex. 3.2. We use N + 2number of grid points in the �nest grid; Nc + 2 number of grid points in the 
oarsest grid.
N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.13 0.13 0.11 0.14 0.15 0.15 0.15 0.15

32 0.13 0.11 0.15 0.15 0.15 0.15 0.15

64 0.11 0.13 0.15 0.15 0.15 0.15

128 0.15 0.15 0.15 0.15 0.15

Fig. 8 shows the numerical results and the second order slope of the best-fit line for

the L∞-error of the numerical solution and its derivative. Table 3 shows the convergence

factor for different values of N and Nc.
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Figure 5: We refer to Ex. 3.2. The data are 
omputed for N = 64.
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u− uh







∞ order




u′− u′
h







∞ order

64 1.86 ·10−2 - 3.38 ·10−1 -

128 4.63 ·10−3 2.01 8.38 ·10−2 2.01

256 1.15 ·10−3 2.01 2.10 ·10−2 2.00

512 2.86 ·10−4 2.01 5.26 ·10−3 2.00

1024 7.24 ·10−5 1.98 1.30 ·10−3 2.01

2048 1.80 ·10−5 2.01 3.28 ·10−4 1.99

4096 4.48 ·10−6 2.01 8.21 ·10−5 2.00

8192 1.12 ·10−6 2.00 2.05 ·10−5 2.00Figure 6: We refer to Ex. 3.2. Left: Representation of the L∞-error of the numeri
al solution and itsderivative. The slope of the best-�t lines is respe
tively s = −2.00 and s = −2.00. Right: List of errorsand order of a

ura
y 
omputed by subsequent errors.
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Figure 7: We refer to Ex. 3.3. The data are 
omputed for N = 64.
Example 3.4. We choose (see Fig. 9)

α = 0.813,

(

uL = ex2

,

uR = esin(5πx),

(

γL = 109 (10+ sin(5πx)) ,

γR = 3+ cos(5πx).
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N + 1




u− uh







∞ order




u′− u′
h







∞ order

64 2.07 ·10−2 - 3.15 ·10−1 -

128 5.15 ·10−3 2.01 7.76 ·10−2 2.02

256 1.20 ·10−3 2.10 1.90 ·10−2 2.03

512 2.19 ·10−4 2.46 5.57 ·10−3 1.77

1024 6.10 ·10−5 1.84 1.33 ·10−3 2.07

2048 1.76 ·10−5 1.79 3.09 ·10−4 2.11

4096 5.05 ·10−6 1.80 7.60 ·10−5 2.02

8192 1.22 ·10−6 2.05 1.86 ·10−5 2.03Figure 8: We refer to Ex. 3.3. Left: Representation of the L∞-error of the numeri
al solution and itsderivative. The slope of the best-�t lines is respe
tively s = −2.01 and s = −2.00. Right: List of errorsand order of a

ura
y 
omputed by subsequent errors.Table 3: Measured V (1, 1)-
y
le 
onvergen
e fa
tor for the numeri
al test of Ex. 3.3. We use N + 2number of grid points in the �nest grid; Nc + 2 number of grid points in the 
oarsest grid.
N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.09 0.10 0.12 0.15 0.15 0.15 0.15 0.15

32 0.09 0.10 0.15 0.15 0.15 0.15 0.15

64 0.12 0.15 0.15 0.15 0.15 0.15

128 0.13 0.15 0.15 0.15 0.15
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Figure 9: We refer to Ex. 3.4. The data are 
omputed for N = 64.
Fig. 10 shows the numerical results and the second order slope of the best-fit line for

the L∞-error of the numerical solution and its derivative. Table 4 shows the convergence

factor for different values of N and Nc.
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u− uh







∞ order




u′− u′
h







∞ order

64 1.59 ·10−2 - 3.46 ·10−1 -

128 3.99 ·10−3 2.00 8.74 ·10−2 1.98

256 9.66 ·10−4 2.05 2.22 ·10−2 1.98

512 2.23 ·10−4 2.12 5.74 ·10−3 1.95

1024 5.25 ·10−5 2.08 1.47 ·10−3 1.97

2048 1.68 ·10−5 1.64 3.31 ·10−4 2.15

4096 4.12 ·10−6 2.03 8.36 ·10−5 1.98

8192 9.87 ·10−7 2.06 2.13 ·10−5 1.97Figure 10: We refer to Ex. 3.4. Left: Representation of the L∞-error of the numeri
al solution and itsderivative. The slope of the best-�t lines is respe
tively s = −1.99 and s = −2.00. Right: List of errorsand order of a

ura
y 
omputed by subsequent errors.Table 4: Measured V (1, 1)-
y
le 
onvergen
e fa
tor for the numeri
al test of Ex. 3.4. We use N + 2number of grid points in the �nest grid; Nc + 2 number of grid points in the 
oarsest grid.
N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.17 0.12 0.14 0.18 0.17 0.15 0.16 0.15

32 0.11 0.14 0.16 0.15 0.15 0.15 0.15

64 0.06 0.14 0.15 0.15 0.15 0.15

128 0.12 0.15 0.15 0.15 0.15Table 5: Measured V (1, 1) asymptoti
 
onvergen
e fa
tors for a problem with a jumping 
oe�
ient ofthe order 10p.
p 0 1 2 3 4 5

ρ 0.11 0.10 0.11 0.11 0.11 0.10

3.1. Independence of convergence factor from the jump in the coefficient

In this section we show that the convergence factor does not depend on the jump in

the coefficient. We choose

α= 0.543,

(

uL = 0,

uR = 0,

(

γL = 10p,

γR = 1,

and start the multigrid process with an initial guess different from zero, in order to compute

the asymptotic convergence factor. We list the results in Table 5.

Remark.3.1. Comparison with Domain Decomposition Method

Domain Decomposition Method (DDM) is another iterative method to solve elliptic prob-
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lems with discontinuous coefficient, based on solving iteratively the two subproblems

−
∂

∂ x

�

γL
∂ uL,(m+1)

∂ x

�

= f in [0,α[ , (3.1a)

uL,(m+1)(0) = g0, (3.1b)

uL,(m+1)(α) = uR,(m)(α), (3.1c)

and

−
∂

∂ x

�

γR
∂ uR,(m+1)

∂ x

�

= f in ]α, 1] , (3.2a)

γR
∂ uR,(m+1)(α)

∂ x
= γL

∂ uL,(m+1)(α)

∂ x
, (3.2b)

uR,(m+1)(1) = g1, (3.2c)

until convergence. A little drawback of this method is that, in order to guarantee the

convergence, it must be α > 0.5 (see [27, pag. 12]). Our method may be regarded as

a DDM, but in place of solving a subproblem to provide the right-hand side for the other

subproblem (and so on iteratively), we just perform a relaxation on a subproblem, and

with the guess obtained we build the right-hand side of the other subproblem, as it can

be seen in Sec. 1.3. With this relaxing strategy, the convergence is always guaranteed, as

showed in numerical tests.

Conclusion

A second order discretization for elliptic equation with discontinuous coefficient on an

arbitrary interface has been provided. Second order accuracy in the derivative is obtained

as well. The linear system is solved by an iterative method obtained relaxing the interface

conditions. The iterative method is then speeded up by a proper multigrid approach, which

transfers separately the defect for both sub-problems obtained from the multi-domain for-

mulation. The measured convergence factor is close to the one measured in the case of

smooth coefficients and it does not depend on the magnitude of the jump in the coefficient.

The method is similar to Domain Decomposition Methods, but a single relaxation sweep is

performed in each subdomain instead to solve it completely. This makes the method more

flexible and there is no restriction on the relative size of the two subdomains.

This paper is the building-block for a future work in higher dimension [12], which

will be carried out by combining the second order discretization in arbitrary domain with

smooth coefficients [10] and the multigrid treatment of problems with non-eliminated

boundary conditions in arbitrary domain [11].

Other future works concern the convection-diffusion equation in a moving domain, in

order to study applications modeled by a Stefan-Type problem. A level-set function will

keep track of the moving interface.
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All this extensions will be coupled with the use of Adaptive Mesh Refinement to ob-

tain accurate solution in the case of domain with complex boundary. A proper multigrid

approach is under investigation for all these works.
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