
Numer. Math. Theor. Meth. Appl. Vol. 5, No. 1, pp. 110-130

doi: 10.4208/nmtma.m12si07 February 2012

A Geometric Space-Time Multigrid Algorithm for the

Heat Equation

Tobias Weinzierl1,∗ and Tobias Köppl2

1 Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748

Garching, Germany.
2 Institut für Mathematik, Technische Universität München, Boltzmannstr. 3, 85748

Garching, Germany.

Received 29 November 2010; Accepted (in revised version) 05 May 2011

Available 21 December 2011

Abstract. We study the time-dependent heat equation on its space-time domain that

is discretised by a k-spacetree. k-spacetrees are a generalisation of the octree concept

and are a discretisation paradigm yielding a multiscale representation of dynamically

adaptive Cartesian grids with low memory footprint. The paper presents a full approx-

imation storage geometric multigrid implementation for this setting that combines the

smoothing properties of multigrid for the equation’s elliptic operator with a multiscale

solution propagation in time. While the runtime and memory overhead for tackling the

all-in-one space-time problem is bounded, the holistic approach promises to exhibit a

better parallel scalability than classical time stepping, adaptive dynamic refinement in

space and time fall naturally into place, as well as the treatment of periodic boundary

conditions of steady cycle systems, on-time computational steering is eased as the algo-

rithm delivers guesses for the solution’s long-term behaviour immediately, and, finally,

backward problems arising from the adjoint equation benefit from the the solution being

available for any point in space and time.

AMS subject classifications: 65M50, 65M55, 65N50, 65N55, 65M22

Key words: Adaptive Cartesian grids, geometric multiscale methods, heat equation, octree, space-

tree, space-time discretisation.

1. Introduction

We study the heat equation

∂tu− κ∆u = f with u : Ω× (0, T) 7→ R, (1.1a)

u(t = 0) = u0 or u(t = 0) = u(T) (1.1b)

u|∂Ω = g,κ ∈ R+ (1.1c)

∗Corresponding author. Email addresses: weinzier�in.tum.de (T. Weinzierl), koeppl�ma.tum.de (T.

Köppl)

http://www.global-sci.org/nmtma 110 c©2012 Global-Science Press

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 111

on the unit square Ω = (0,1)d ⊂ Rd with d ∈ {1,2,3} for a fixed time interval (0, T). f ,

g, and u0 are sufficiently smooth. The simple equation is a building block of many sophis-

ticated applications in science and engineering—ranging from nano-scale computational

fluid dynamics to chemical diffusion processes in turbulent flows. Software for this type

of problems typically discretises the time with a standard ordinary differential equation

integrator, which leads to a cascade of elliptic problems in space, and uses a sophisticated

linear equation system solver such as a geometric multigrid algorithm for the latter.

While both time integration and multigrid solver are comprehensively studied, the

problem nevertheless is far from an old-fashioned challenge. As more and more massively

parallel computers are released, the question arises how such a cascade of elliptic prob-

lems scales. Often, the size of one single elliptic subproblem is too small to exploit the full

power of all processing units. This holds in particular for coarse grid subproblems of multi-

grid algorithms. More and more cores then do not enable one to handle longer and longer

simulated time intervals in a given period due to the sequential character of the underly-

ing challenge [10,11]. Parareal-type algorithms [5] solving several spatial subproblems in

parallel promise to resolve this problem due to a good prediction for the solution’s time

behaviour. Other approaches deploy the first p subsequent time slices to the p different

nodes of a parallel computer [9, 19] and implement a chain of water carriers where the

first computing node takes over the work of the p+1th time step as soon as the initial time

step’s solution has converged. However, on massively parallel systems, some processing

units here might solve rather irrelevant equation systems. As many experimental settings

exhibit small regions of interest (boundary or interface subdomains, e.g.) dynamic adap-

tivity becomes one key ingredient of sophisticated solvers. The adaptivity in space implies

multiscale behaviour in time. Regions with small scale spatial behaviour also require an

accurate time representation. Local time stepping approaches promise to take this insight

into account. However, local time stepping makes load balancing challenging on massively

parallel computers. As more and more solvers change from stand-alone applications to

applications embedded into steering environments, coupled software component ecosys-

tems, and problem solving environments [1], today’s solvers for parabolic equations not

only have to deliver an accurate approximation of the real-world behaviour. Good guesses

of the long term behaviour have to be delivered fast to enable users and other components

to interact with the solver immediately. Smaller and smaller time step sizes required to

get better approximations however force the environment to wait longer for results. Se-

quences of computations with finer and finer time step sizes promise to deliver coarse grain

solutions on time. However, they often neglect fine scale effects stemming from the initial

conditions. As more and more challenges change from forward problems to optimisation

and calibration tasks, algorithms today often have to solve parabolic equations forward

and backward in time simultaneously [2,3]. For this, one needs a representation of the so-

lution all along the time interval. Sophisticated checkpointing strategies promise to deliver

such snapshots of the solution at any time for a fair trade-off between computing resources

and storage requirements [2]. However, with less and less memory per core available, it is

not clear how these approaches scale on supercomputers—in particular for d = 3, where a

full, regularly resolved space-time grid already reveals the curse of dimension [8]. Placed

112 T. Weinzierl and T. Köppl

in this arena of requirements and constraints, we integrate different ideas resulting from

these different challenges into one realisation—a merge of well-known techniques rather

than a new multigrid approach, but that merger proofs to be of value for some applications.

Few algorithms for parabolic equations discretise both time and space in the same

manner. Instead, the time is typically meshed different from the space, and the design of

effective solvers concentrates on the spatial components of the differential operator. We

present a multigrid approach for the heat equation that discretises both space and time

with an octree-like data structure in a Petrov-/Ritz-Galerkin way similar to [3, 8], i.e. it

treats the time as an additional space dimension. From this point of view, we interpret

the whole discretisation as one global load balancing challenge, we implement dynamic

adaptivity in space and time (the latter mirroring adaptive time stepping techniques), we

deliver rough approximations of the solution behaviour in time very fast on a coarse grid,

and we always have the whole evolution of the solution at hand. Furthermore, the imple-

mentation of time-periodic initial-final conditions is straightforward [16]. The key enabler

for this realisation is the fact that the dynamically adaptive multiscale spacetree grid comes

along with a very low memory footprint [17,18].

Our idea is advantageous if and only if it exhibits a spatial behaviour similar to multi-

grid algorithms for elliptic problems, and if and only if it can cope with standard time

stepping schemes in terms of runtime. We hence implement a geometric multigrid solver

for the spatial operator with a full approximation storage scheme on a hierarchical gener-

ating system similar to [10] where the implementation follows [6] and ideas of the fast

adaptive composite grid methods [13]. The generating system yields a multiscale, multi-

frequency representation of the solution in space, and we use this multiscale representation

to prolongate the solution behaviour in time. This approach mirrors the idea of Parareal

schemes [5, 12] that switch to a spatial frequency representation explicitly to elaborate a

first guess of what the solution looks like in the future. With a holistic approach that re-

solves the initial condition accurately and prolongates different resolutions of the solution

to different subsequent time steps, we end up with a temporal full multigrid that exploits

the multiscale behaviour of the solution—not the error which is well-known to be diffi-

cult [11]—in time and the multiscale behaviour of the error evolution in space. It applies

standard coarsening in time and, consequently, scales in time. This paper emphasises the

multigrid aspects and realisation.

The remainder is organised as follows: We first introduce our space-time spacetree

yielding a multiscale representation of the space-time domain. Then, we define a generat-

ing system for finite elements on this space-time discretisation (Section 3). In Section 4,

we first study the multiscale behaviour of the solution for standard time stepping schemes.

This then leads to a space-time multiscale formulation of the global problem that treats all

time snapshots simultaneously and adaptively. Some numerical results for simple settings,

a short conclusion, and an outlook close the discussion.

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 113

Figure 1: First three steps of the
onstru
tion of a spa
etree (left); snapshot of an adaptive two-dimensional spa
etree grid resolving a rotating heat sour
e (right).
2. The spacetree grid

We embed the computational domain Ω×(0, T) from (1.1) into an axis-aligned bound-

ing box. In our case, it is a d+1-dimensional hypercube. Then, we cut this hypercube into

k equally sized parts along each coordinate axis. The cuts yield a grid that is refined into

kd parts spatially, and it represents k time steps. Finally, we continue to cut these kd+1 hy-

percubes recursively, while we decide for each hypercube independently of all other cubes

whether to refine or not.

Such a scheme ends up with an adaptive Cartesian grid both in space and time. The

face with a normal along axis d + 1 that runs through the coordinate system’s origin rep-

resents the initial condition. The opposite face of the bounding hypercube stands for the

final condition at t = T . The adaptive Cartesian grid is spanned by a tree data structure

where each tree node has either none or kd+1 children, i.e. each node represents either

a cell refined into kd+1 subcells or an unrefined cell. Let a tree node have a level that is

equal to the path length from the tree’s root to this node. Each level of the k-spacetree

represents a regular Cartesian grid, and, thus, the k-spacetree gives us a sequence of finer

and finer grids. Finer and finer implies both refinement in space and time.

All reasoning here holds for arbitrary k ≥ 2. However, we present results solely for

k = 3, as we have a PDE solver framework for k = 3 at hand [17, 18]. In accordance

with these publications, we work with the tree instead of the adaptive Cartesian grids as

the tree gives us a multiscale representation of the space-time discretisation (Fig. 1, left

side). Dynamic adaptive refinement and coarsening fit naturally into this concept, as they

correspond to a further extension of leaf tree nodes, i.e. we apply the recursive construction

scheme to unrefined nodes, or to removing subtrees respectively. In return, there might

be several vertices v = (x ,ℓ)v, x ∈ Ω× (0, T),ℓ ∈ N+0 at the same location in space-time,

114 T. Weinzierl and T. Köppl

however, each of them belongs to one specific grid level ℓ.

In accordance with [17, 18], the adaptive Cartesian grid can be stored with one byte

per grid cell. As a result, it is possible to store huge grids on a single core of a super-

computer, and it is also possible to store big (d + 1)–dimensional space-time grids. In

comparison with alternative approaches to handle d + 1–dimensional grids such as sparse

grids [8], the spacetree provides a simpler algorithmic environment due to its plain re-

cursive definition. This is particularly advantageous for dynamically adaptive grids and

in-situ mesh generation. However, the recursive construction yields a standard coarsening

in time. From a storage complexity point of view, this is a pro. From a solver point of view,

the standard coarsening in time has to be studied carefully.

3. A finite element space for the k-spacetree grid

We solve the heat equation (1.1) in its weak formulation, i.e.

∫

Ω×(0,T)

�
∂tu− κ∆u,ϕ
�

d(x , t) =

∫

Ω×(0,T)

�
f ,ϕ
�

d(x , t), ∀ϕ, (3.1)

with ϕ : Ω × (0, T) 7→ R, u and ϕ sufficiently smooth, and derivatives that exist in the

corresponding weak sense. The spacetree defines cells, vertices with 2d+1 adjacent cells on

the same spacetree level, and vertices with less than 2d+1 adjacent cells on the same level.

Latter vertices are hanging nodes in space-time. Let each non-hanging vertex correspond

to one shape function uv(x , t) = φv(x)̺v(t) and one test function ϕv(x , t) = φv(x) ˜̺v(t).

Both exhibit tensor product structure with φv(x) as d-linear hat function in space.

The linear combination of all these uv is a generating system [7]. It is not a basis since

multiple vertices might exist at the same position in space. Let U be all the shape functions

induced by the k-spacetree that belong to a vertex that is neither hanging nor is there a

non-hanging vertex on a finer spacetree level, i.e. shape functions belonging to vertices v1

with

uv1=(x ,ℓ)1
∈ U⇒6 ∃v2 = (x ,ℓ)2 : x2 = x1 ∧ ℓ2 > ℓ1.

v1 and v2 are not hanging. U induces a fine grid ansatz space and we approximate the solu-

tion u of (3.1) with a linear combination of shape functions from this U.

V is the corresponding test space. The leaves of the k-spacetree induce a non-conform

tessellation C whose cells cover the whole discretised computational domain.

With a grid, shape functions, and test functions at hand, we reformulate the integral

in (3.1) as a sum over integrals on k-spacetree leaf nodes. Depending on the choice of ̺

and ˜̺, we end up with different equation systems. One of the simplest choices is to make

̺ also piecewise linear and ˜̺ piece-wise constant and running backward in time, i.e. the

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 115

˜̺v support covers the 2d cells adjacent to v that run backwards in time. The integral

∑

c∈C

∫

c

�
∂tu,ϕ
�

d(x , t)− κ

∫

c

�
∆u,ϕ
�

d(x , t)−

∫

c

�
f ,ϕ
�

d(x , t)

=
∑

c∈C

∫

c

�
∂tu,ϕ
�

d(x , t) +κ

∫

(t0 ,t1)

∫

(x0,x1)

�
∇u,∇ϕ
�

d x d t

−

∫

c

�
f ,ϕ
�

d(x , t), u ∈ U, v ∈ V,

integrated by parts in terms of the space derivatives then yields a Crank-Nicholson-type

equation system sometimes referred to as cG(1)CN. Different choices of ̺ and ˜̺ give us

other standard time-stepping schemes such as an implicit Euler [3,8] (cG(1)dG(0)). Both

the Crank-Nicolson-like scheme and the implicit Euler-like scheme are subject of further

discussion. The “like” emphasises that these operators do not result from a time stepping

scheme but from a Petrov-Galerkin or Ritz-Galerkin, respectively, formulation on the space-

time domain. This gives us equations mirroring adaptive time-stepping: if the k-spacetree

is not perfectly balanced, C is an adaptive mesh in both time and space. In regions with

smaller d + 1-dimensional hypercubes, more time steps are enforced than in regions with

coarse spacetree cells.

An interesting property of both schemes is that they yield solely 2 · 3d -point stencils.

They can be implemented matrix-free for Jacobi, Gauß-Seidel-type, or conjugate gradient

solvers [17]. This is, on the one hand, important if the algorithm is memory bounded as

there is no memory overhead to hold the matrix—a property that gains impact with new

supercomputers released. On the other hand, it is particularly important if the grid changes

permanently due to full multigrid or dynamic adaptivity as there is no runtime overhead

for the matrix (re-)assembly. The stencils can be written down as linear combination

L(h) = C · hd M + C · hd−2A

acting cell-wisely on the unknowns of the “younger” cell face and

R(h) = C · hd M + C · hd−2A

acting on the “older” unknowns and also considering the right-hand side, C being a generic

constant that might depend on the time step size. M and A are the standard d-dimensional

finite element mass and stiffness stencils without h scaling with the shape and test function

being hat functions in space.

1

6h






0 0 0

h2− 6 4h2+ 12 h2 − 6

h2 4h2 h2






=
h

6






0 0 0

1 4 1

0 0 0




+

1

h






0 0 0

−1 2 −1

0 0 0






︸ ︷︷ ︸

L(h)

−
h

6






0 0 0

0 0 0

1 4 1






︸ ︷︷ ︸

R(h)

116 T. Weinzierl and T. Köppl

switches from a d-dimensional to a d + 1-dimensional space-time stencil representation

and shows an implicit Euler for d = 1,κ = 1 with the upward direction being the time

axis. There is no additional parameter for the time step size involved here, since all grid

cells of the spacetree are hypercubes and, consequently, the time step size equals the mesh

size h. If we squeeze the bounding box of the space-time domain, we choose different

temporal and spatial mesh sizes, and the time step size and h do not coincide. While that

provides additional flexibility for the time stepping scheme, it does not change the fact that

the spacetree prescribes a standard coarsening in time. Again, this is a pro from a storage

point of view since coarse grids are significantly smaller than fine grids. From a solver

point of view, this standard coarsening in time has to be studied.

Finally, the adaptivity (in time) benefits directly from the space-time formulation. The

constraint

∀v1 = (x ,ℓ)1, v2 = (x ,ℓ)2, uv1
6∈ U : uv1

= uv2
, ℓ2 > ℓ1 ∧ uv2

∈ U (3.2)

gives us a trivial injection of the fine grid solution representation to the coarser levels,

i.e. it defines a coarsened representation of the current solution on each grid level of the

spacetree. At the same time, the space-time definition of the shape functions prescribes an

interpolation for the hanging nodes. Both operations, the injection and the interpolation

fit to the spacetree space-time formulation. They propose inherently to solve the equation

systems with a full approximation storage scheme similar to [6] where the implementation

follows [13]: the hanging nodes are interpolated due to the shape functions; the coarse

level vertices that do not contribute to the fine grid are set to a value due to the constraint

(3.2). Consequently, we evaluate the same stencil for all cells of one grid level that are

adjacent to at least one fine grid vertex, and the hanging nodes—both in time and in

space—do not require special stencils.

4. Multigrid

The discussion of our multigrid is twofold. We first analyse standard time stepping

schemes before we switch to the actual space-time multigrid formulation and exploit the

insights we obtained from the time stepping scheme.

4.1. A time stepping experiment

The operators we evaluate on the space-time grid equal a weighted linear combination

of an operator stemming from the Laplacian and a mass operator. The sum is a standard

elliptic operator. Multigrid for elliptic operators is comprehensively studied, so it is conve-

nient to pick up this experience. In this subsection, we fix a time step size τ whereas the

time step size in the k-spacetree later on equals the cell mesh size h. If we solve the one-

time-step equation with a geometric Galerkin two-grid scheme where the prolongation P

exclusively results from φ, the resulting coarse grid equation equals

PT L(h,τ)Pekh(τ)
︸ ︷︷ ︸

L(k·h,τ)ekh(τ)

= PT (R(h,τ)uh(0)− L(h,τ)uh(τ))
︸ ︷︷ ︸

PT rh(τ)

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 117

���

�

�
�

���	
�

����	
�

Figure 2: Left: generating system with two levels; Right: the inje
tion I
oarsens the solution due toa simple
opy of the values (k = 2), R(h) determines the right-hand side with respe
t to h, and theprolongation P and restri
tion PT a
t only on one time sli
e (the left sli
e represents the solution u(0),the right sli
e the time step u(t)).
with ekh(t) approximating the coarse grid error on the time slice t = τ. A recursive

extension of the two-grid scheme to a multigrid algorithm is straightforward. The coarse

grid operator is again a linear combination of the two elliptic operators with a different

scaling in terms of h, and it equals the operator arising from a direct discretisation of the

elliptic system on the coarser level. We again implement this geometric multigrid solver

matrix-free.

Due to the generating system (Fig. 2), it is easy to implement a full approximation

storage (FAS) scheme with an injection I acting on the solution, i.e. I represents the reali-

sation of the constraint (3.2). Let I copy values to the coarser grid if there are two vertices

at the same position in space. The implementation of this operator is trivial due to the

construction rule of the k-spacetree. The fine grid equation of the two-grid FAS algorithm

then remains

bh(τ) := R(h,τ)uh(0),

L(h,τ)uh(τ) = bh(τ)

and is subject of µ1 presmoothing steps. Yet, the FAS yields the modified coarse grid

problem

uk·h(τ) ← Iuh(τ),

ûh(τ) ← uh(t)− Puk·h(τ),

r̂h(τ) ← bh(t)− L(h,τ)ûh(τ),

bk·h(τ) ← PT r̂h(τ),

L(k · h,τ)uk·h(τ) = bk·h(τ),

uh(τ) ← ûh(τ) + Puk·h(τ).

118 T. Weinzierl and T. Köppl

The back projection in the last line is typically followed by µ2 postsmoothing steps. This

representation follows [6] who introduced the notion of the hierarchical residual r̂. The

recursive extension to a multigrid V -cycle V (µ1,µ2) is again straightforward.

With a hierarchical generating system, with a multiscale representation of the solution

due to I , and with a well-defined space-time interpolation P, local a posteriori error esti-

mators relying on different grid resolutions (refinement history) [14,15] fall naturally into

place. In our experiments, we however restrict to a pure h error estimator that refines the

grid wherever the second derivative of the approximate is large: The ten percent of the

vertices with the largest hierarchical surplus ûh(t) measured in the maximum norm are

marked and the algorithm then refines the surrounding cells. The coarsening is realised

the other way round.

A full multigrid (FMG) algorithm follows from this scheme directly. We introduce a

third order interpolation PFAS . Then, we set up a sufficiently coarse grid, perform one

V (µ1,µ2)-cycle, prolongate the approximate due to PFAS , and continue iteratively until the

finest grid is reached. For each step of this FMG, we need an appropriate right-hand side

bh·ik(t) = R(h · ik,τ) · I · I · . . . I
︸ ︷︷ ︸

k times

uh(0) (4.1)

that we define in terms of the injection and the mesh-size dependent right-hand side oper-

ator (Fig. 2).

Experiments with V (µ1,µ2) cycles and F MG(µ1,µ2) for some problems with suffi-

ciently smooth solutions reveal two insights:

• The bigger the time step the bigger the “speedup” of a V -cycle compared to a simple

Jacobi solver, if both solvers start with uh(0) as initial guess for uh(τ). If the time

step τ is embarrassingly small, the number of required Jacobi iterations equals or

even underruns the number of multigrid cycles, i.e. Jacobi is computational cheaper.

• If the time step exceeds a certain threshold, FMG converges faster than the V -cycles.

Otherwise, the V -cycles are faster in terms of total operations.

Consequently, there is a small range 0 < τ ≤ τ0 where plain Jacobi is the fastest solver.

This range is followed by a second range τ0 < τ ≤ τ1 where the V -cycle is the best choice.

For a time step size τ > τ1, FMG with (4.1) outperforms the two other solvers. This

is a well-known fact that is due to the mass operator acting as Tikhonov regularisation

term—the weight of the Laplacian L(h,τ) in the overall operator grows with τ.

The reason for this behaviour also becomes obvious, if we decompose the initial con-

dition spatially into its Fourier modes. Then, the unperturbed initial condition evolves in

time as

u(t) :=
∑

k

ũk(t)e
−iπkx . (4.2)

It is noted that

∆u(t) = −π2
∑

k

k2ũk(t)e
−iπkx and ∂tu(t) =

∑

k

(∂t ũk(t))e
−iπkx

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 119

Ω

t

Figure 3: Left: Starting grid for the time-F -
y
le; Right: Spa
e-time grid for d = 2 after several
F -sub
y
les with adaptive re�nement.
imply the ordinary differential equation ∂t ũk(t) = −π

2k2 ũk(t), i.e. ũk(t) = C e−π
2k2 t .

The evolution of frequency components of the solution in time is the faster the bigger the

frequency. Small stimuli of the solution at t = 0 are damped faster than low frequency

stimuli. If the time step is very small, the difference of uh(0) and uh(τ) comprises conse-

quently primarily fast oscillations—low frequency, long-term behaviour cannot be resolved.

This difference u(t)−u(0) (the initial error in the equation system) dominated by high fre-

quencies is damped efficiently by Jacobi. For large time steps, the constant extrapolation

of uh(0) to uh(τ) however also comprises low frequency components and, consequently, a

multigrid solver then is of value.

Injection I yields a frequency decomposition of the solution on the hierarchical gen-

erating system. The coarser the grid the smoother the solution components that still are

represented. At the same time, the hierarchical surplus û denotes the high frequency con-

tributions. FMG (4.1) derives the solution level after level, i.e. component-wise in terms of

Fourier modes. First, low frequency components are projected to the next time step. The

solver then derives a (low frequency) solution to this problem. With a smooth represen-

tation of the solution, it proceeds with higher frequencies. FMG with V -cycles as building

block is more expensive than few pure V -cycles in terms of total computations. While

this overhead is bounded by a constant, it nevertheless dominates if the difference of the

solution and the preceding time step comprises only few low-frequency errors.

4.2. Full multigrid in time

The latter rationale justifies Parareal implementations that choose a Fourier-based time

integrator for the coarse time predictor (see, e.g., [5]). This paper realises a similar proce-

dure for the space-time grid.

We start with an unbalanced k-spacetree that resolves the initial condition as fine as

120 T. Weinzierl and T. Köppl

possible. Everywhere else, the k-spacetree is as coarse as possible. Such an adaptive

space-time tree resolves the initial condition accurately (Fig. 3). On this grid, we apply

one V -cycle followed by an error estimator evaluation that refines the grid in space and

time. Here, the solution of the V -cycle is projected to the refined grid with a projection

PFAS . In accordance with Section 4.1, PFAS exhibits tensor product style, its temporal

interpolation equals P ’s temporal operator discussed below, but it is of higher order in

space. We continue recursively. Such a scheme resembles nested iterations on the space-

time grid, where we start with the maximal resolution on the initial condition hyperface of

the space-time hypercube. It is a temporal full multigrid.

Compared to the one-time-step studies before, the linear operators belonging to L(h)

and R(h) remain the same. The restriction PT also remains the same, as we apply a strictly

spatial elliptic multigrid scheme. Both the prolongation P and the higher order prolonga-

tion PFAS however are augmented by an additional contribution forward time, i.e. they do

not only act in space but also linearly on the successing time steps. A standard weightening

stencil for d = 1, k = 2

P =
1

4






0 0 0

2 4 2

0 0 0




 becomes P̂ =

1

4






CP̂ 2CP̂ CP̂

2 4 2

0 0 0




 (4.3)

with the upward direction representing the time axis and a well-suited 0< CP̂ ≤ 1 (CP̂ = 1

mirrors a linear solution propagation in time). This reflects the fact that an update of the

solution on any coarse level affects also all the upcoming time steps. Due to the modified

prolongation, the solver is not a textbook Galerkin multigrid scheme anymore. Yet, the

coarse grid operator

L(k · h) = PT L(h)P̂

Figure 4: Left: 2+ 1-dimensional spa
etree (time axis from bottom to top) where a heat sour
e movesover the two-dimensional surfa
e; grid stems from a time F -
y
le with dynami
 adaptivity
riterion;Right: a bar with
onstant temperature
ools down due to homogeneous boundary
onditions; d = 1and time axis along from top left to bottom right.

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 121

still equals the direct spatial discretisation as PT acts only spatially and the coarse operator

collapses in time.

The standard coarsening in time picks up the insight that for very small time steps

Jacobi is faster than a multigrid algorithm: time slices next to the initial condition are

processed by a Jacobi or m-grid algorithm with m being small: only in regular time slots,

several-grid smoothing is applied. It depends on the slice’s position in time how many

coarser grid lines coincide with this slice and, hence, how many coarser grid corrections are

performed. The start layout of the grid also picks up the insight that for large time steps a

full multigrid is faster than other solvers. While Jacobi, e.g., is applied on the first time step

due to this start grid and the standard coarsening in time, the terminal time slice is tackled

by full multigrid with the right-hand side (4.1). In-between, there is all sort of mixtures of

Jacobi and nested m-grid V -cycles. The dynamic adaptivity that refines both in space and

time picks up the idea that a fine time resolution is important if the solution in space-time

changes rapidely, i.e. where a fine spatial mesh is required. Whereever hanging nodes in

time occur, the spacetree paradigm is equivalent to adaptive time stepping. Whereever

a load balancing scheme cuts the space-time domain along the time direction and makes

the computing nodes handle the non-overlapping subdomains exchange the boundary only

after each iteration, the spacetree paradigm is related to wavelet relaxation schemes [12]:

each node updates “its” solution on a time-space subinterval, and then exchanges and

updates the vertices along a time submanifold. As there might be hanging vertices along

this manifold, the different subdomains are processed with different time meshes.

5. Results

We study our space-time multigrid algorithm for different settings on the d+1-dimensi-

onal hypercube. All experiments comprise homogeneous boundary conditions, i.e. g = 0.

The first two examples simulate a cooling process where the initial condition equals

u0 =
∏

i∈{1,...,d}

sin(πx) with f = 0, or (5.1)

u0 = 1 with f = 0, (5.2)

and the solution u becomes smaller with increasing time due to the lack of a stimulus

f . The system cools down (Fig. 1 and Fig. 4, right). An analytical solution for the first

initial condition results directly from (4.2). The third experiment starts with a zero initial

condition. Then, a heat source is rotating around the center of the d ≤ 2-dimensional

hyperface or the center of one of the cube’s faces respectively and heats up the system

while the homogeneous boundary conditions again cool down the whole system (Fig. 1).

∂tu− κ∆u= f ,

u0 = 0, κ= 0.2, u|∂Ω = 0 and f ∈ {0,1}. (5.3)

The stimulus f is modelled by a small circle. Such a setup enters a transient phase at

startup and then passes over into a periodic solution, i.e. a steady cycle.

122 T. Weinzierl and T. Köppl

All the experiments were conducted with the PDE solver framework Peano [17,18] and,

thus, restrict to k = 3. This code traverses the (k = 3)-spacetree in a depth-first manner

with a stack automaton and evaluates the operators stricly cell-wisely without assembling

any global matrix. For the measurements, we used the BlueGene/P system Shaheen at the

King Abdullah University of Science and Technology (KAUST) as test machine. Since scal-

ability, load balancing, and domain decomposition are beyond the scope of this multigrid

paper, we restrict ourselves to one node of this machine, i.e. four cores. A damped Jacobi

smoother with ω = 0.8 acts as smoother for the multigrid algorithms, the time integra-

tor equals an implicit Euler to avoid instabilities stemming from rough input and stimulus

data.

5.1. Memory footprint and memory behaviour

The realisation comes along with a very low memory footprint (Table 1). This memory

footprint per vertex depends on d if we use an error estimator, as the evaluation criterion

in the realisation analyses the hierarchical surplus along each of the d+1 coordinate axes.

The code can handle adaptive regular Cartesian grids with O (107) vertices on one node

with 4 GByte of main memory. Main memory of that size is for example characteristic

for BlueGene/P architectures. That big problems per node are promising candidates for a

good parallel efficiency, as the workload that can be handled is reasonably high.Table 1: Memory footprint per vertex for di�erent solvers. The numbers are given in bytes.
d = 1 d = 2 d = 3

Explicit Euler (without error estimator) 18 18 18

Implicit Euler (without error estimator) 26 26 26

Implicit Euler (with error estimator) 34 42 50

Crank-Nicolson (without error estimator) 26 26 26

Crank-Nicolson (with error estimator) 34 42 50

Due to the low memory requirements and the strict element-wise, matrix-free process-

ing, the cost per vertex per iteration is independent of the total problem size handled by

one node: cache effects are negligible since the cache hit rate never is smaller than 99,95%

and, with that simple stencils of fixed size to evaluate, the time to get and write back one

vertex to or from the L2 cache coins the runtime. This is also in accordance with [17,18],

and allows us to specify the algorithm’s performance in the abstract metric stencil updates,

i.e. how often the algorithm has to apply a stencil such as the operator, prolongation, or

restriction.

5.2. A time-stepping experiment

The motivation for our space-time approach in Section 4.1 stems from experiments

with standard time stepping. We study the experiments (5.1) and (5.3) for d = 2 Table 2

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 123Table 2: Sten
il updates for di�erent solvers for the �rst time step for di�erent mesh sizes. The numberin bra
kets is the number of iterations/(nested) V-
y
les. Experiment (5.1) with d = 2.
Jacobi

τ 282 822 2442 7302

5.00 · 10−7 4.08 · 104 (52) 3.09 · 105 (46) 1.19 · 106 (20) 5.86 · 106 (11)

1.00 · 10−6 4.23 · 104 (54) 2.82 · 105 (42) 7.74 · 105 (13) 1.17 · 107 (22)

5.00 · 10−6 4.39 · 104 (56) 2.42 · 105 (36) 9.53 · 105 (16) 5.54 · 107 (104)

1.00 · 10−5 4.78 · 104 (61) 2.76 · 105 (41) 1.67 · 106 (28) (≥ 200)

2.50 · 10−5 5.33 · 104 (68) 3.09 · 105 (46) 4.11 · 106 (69) (≥ 200)

5.00 · 10−5 5.64 · 104 (72) 3.36 · 105 (50) 8.16 · 106 (137) (≥ 200)

V(1,1)

5.00 · 10−7 4.23 · 104 (5) 3.05 · 105 (4) 2.06 · 106 (2) 1.24 · 107 (1)

1.00 · 10−6 5.07 · 104 (6) 3.05 · 105 (4) 2.06 · 106 (3) 1.24 · 107 (2)

5.00 · 10−6 5.07 · 104 (6) 3.05 · 105 (4) 2.06 · 106 (3) 1.24 · 107 (2)

1.00 · 10−5 5.07 · 104 (6) 2.29 · 105 (3) 2.06 · 106 (3) 1.85 · 107 (3)

2.50 · 10−5 5.07 · 104 (6) 2.29 · 105 (3) 2.06 · 106 (3) 2.47 · 107 (4)

5.00 · 10−5 4.23 · 104 (5) 3.05 · 105 (4) 3.43 · 106 (5) 3.09 · 107 (5)

V(3,3)

5.00 · 10−7 2.29 · 104 (2) 2.10 · 105 (2) 9.49 · 105 (1) 8.56 · 106 (1)

1.00 · 10−6 2.29 · 104 (2) 2.10 · 105 (2) 9.49 · 105 (1) 8.56 · 106 (1)

5.00 · 10−6 2.29 · 104 (2) 2.10 · 105 (2) 9.49 · 105 (1) 8.56 · 106 (1)

1.00 · 10−5 2.29 · 104 (2) 1.05 · 105 (1) 9.49 · 105 (1) 8.56 · 106 (1)

2.50 · 10−5 2.29 · 104 (2) 1.05 · 105 (1) 9.49 · 105 (1) 8.56 · 106 (1)

5.00 · 10−5 2.29 · 104 (2) 2.10 · 105 (2) 1.90 · 106 (2) 1.71 · 107 (2)

FMG(1,1)

5.00 · 10−7 1.31 · 105 (17) 1.10 · 106 (17) 6.51 · 106 (13) 3.39 · 107 (10)

1.00 · 10−6 1.22 · 105 (16) 1.10 · 106 (17) 5.83 · 106 (12) 4.63 · 107 (12)

5.00 · 10−6 1.39 · 105 (18) 9.52 · 105 (15) 4.45 · 106 (10) 7.72 · 107 (17)

1.00 · 10−5 1.39 · 105 (18) 7.99 · 105 (13) 5.83 · 106 (12) 8.33 · 107 (18)

2.50 · 10−5 1.39 · 105 (18) 5.71 · 105 (10) 8.57 · 106 (16) 8.95 · 107 (19)

5.00 · 10−5 1.22 · 105 (16) 4.95 · 105 (9) 9.94 · 106 (18) 8.33 · 107 (18)

FMG(3,3)

5.00 · 10−7 6.30 · 104 (7) 4.74 · 105 (7) 3.35 · 106 (7) 2.16 · 107 (7)

1.00 · 10−6 6.30 · 104 (7) 5.79 · 105 (8) 3.35 · 106 (7) 3.02 · 107 (8)

5.00 · 10−6 6.30 · 104 (7) 4.74 · 105 (7) 2.40 · 106 (6) 4.73 · 107 (10)

1.00 · 10−5 7.45 · 104 (8) 3.69 · 105 (6) 3.35 · 106 (7) 4.73 · 107 (10)

2.50 · 10−5 6.30 · 104 (7) 2.65 · 105 (5) 4.30 · 106 (8) 4.73 · 107 (10)

5.00 · 10−5 6.30 · 104 (7) 2.65 · 105 (5) 5.25 · 106 (9) 4.73 · 107 (10)

and Table 3. The (spatial) grid both for t = 0 and t = τ is regular, we use an implicit Euler,

and the solver stops as soon as the difference of two subsequent approximates of u(t) runs

below 10−10 in the maximum norm.

If the ratio of time step size τ to mesh size is sufficiently small, the pure Jacobi out-

performs the other solvers. For a fixed mesh size, there are time step size domains where

different variants of V -cycles are faster than full multigrid or vice versa. While Jacobi’s

performance degrades with increasing time step size, the difference between the V -cycles

and the full multigrid becomes smaller. Finally, if the mesh size is sufficiently small and

the time step size is sufficiently big, the full multigrid overtakes the other two solvers, no

124 T. Weinzierl and T. KöpplTable 3: Sten
il updates for di�erent solvers for the �rst time step for di�erent mesh sizes. The numberin bra
kets is the number of iterations/(nested) V-
y
les. Experiment (5.3) with d = 2.
Jacobi

τ 282 822 2442 7302

5.00 · 10−7 7.21 · 104 (92) 5.65 · 105 (84) 3.04 · 106 (51) 1.17 · 107 (22)

1.00 · 10−6 7.21 · 104 (92) 4.91 · 105 (73) 2.44 · 106 (41) 2.18 · 107 (41)

5.00 · 10−6 6.98 · 104 (89) 3.29 · 105 (49) 1.37 · 106 (23) 9.97 · 107 (187)

1.00 · 10−5 6.82 · 104 (87) 2.56 · 105 (38) 2.68 · 106 (45) (≥ 200)

2.50 · 10−5 6.27 · 104 (80) 1.75 · 105 (26) 6.37 · 106 (107) (≥ 200)

5.00 · 10−5 5.57 · 104 (71) 1.75 · 105 (26) (≥ 200) (≥ 200)

V(1,1)

5.00 · 10−7 2.96 · 105 (35) 2.74 · 106 (36) 1.78 · 107 (26) 6.80 · 107 (11)

1.00 · 10−6 2.96 · 105 (35) 2.67 · 106 (35) 1.44 · 107 (21) 7.41 · 107 (12)

5.00 · 10−6 2.79 · 105 (33) 1.91 · 106 (25) 7.55 · 106 (11) 1.24 · 108 (20)

1.00 · 10−5 2.62 · 105 (31) 1.52 · 106 (20) 8.92 · 106 (13) 1.36 · 108 (22)

2.50 · 10−5 2.28 · 105 (27) 9.91 · 105 (13) 1.24 · 107 (18) 1.42 · 108 (23)

5.00 · 10−5 1.94 · 105 (23) 7.62 · 105 (10) 1.44 · 107 (21) 1.36 · 108 (22)

V(3,3)

5.00 · 10−7 1.37 · 105 (12) 1.36 · 106 (13) 8.54 · 106 (9) 6.85 · 107 (8)

1.00 · 10−6 1.37 · 105 (13) 1.26 · 106 (12) 6.64 · 106 (7) 6.85 · 107 (8)

5.00 · 10−6 1.26 · 105 (11) 1.26 · 106 (12) 3.80 · 106 (4) 6.85 · 107 (8)

1.00 · 10−5 1.26 · 105 (11) 9.43 · 105 (9) 4.75 · 106 (5) 6.85 · 107 (8)

2.50 · 10−5 1.03 · 105 (9) 5.24 · 105 (5) 5.69 · 106 (6) 6.85 · 107 (8)

5.00 · 10−5 9.14 · 104 (8) 4.19 · 105 (4) 6.64 · 106 (7) 6.85 · 107 (8)

FMG(1,1)

5.00 · 10−7 2.58 · 105 (32) 2.48 · 106 (35) 2.09 · 107 (34)

1.00 · 10−6 2.58 · 105 (32) 2.48 · 106 (35) 1.96 · 107 (32)

5.00 · 10−6 2.58 · 105 (32) 2.25 · 106 (32) 1.27 · 107 (22)

1.00 · 10−5 2.58 · 105 (32) 2.09 · 106 (30) 9.94 · 106 (18)

2.50 · 10−5 2.49 · 105 (31) 1.71 · 106 (25) 6.51 · 106 (13)

5.00 · 10−5 2.32 · 105 (29) 1.33 · 106 (20) 7.89 · 106 (15)

FMG(3,3)

5.00 · 10−7 1.32 · 105 (13) 1.21 · 106 (14) 1.09 · 107 (15)

1.00 · 10−6 1.32 · 105 (13) 1.21 · 106 (14) 9.99 · 106 (14)

5.00 · 10−6 1.32 · 105 (13) 1.10 · 106 (13) 6.19 · 106 (10)

1.00 · 10−5 1.32 · 105 (13) 9.98 · 105 (12) 5.25 · 106 (9)

2.50 · 10−5 1.20 · 105 (12) 8.93 · 105 (11) 3.35 · 106 (7)

5.00 · 10−5 1.20 · 105 (12) 6.84 · 105 (9) 4.30 · 106 (8)

matter which number of pre- and postsmoothing steps is chosen. The advantage of pure

Jacobi compared to the multigrid solvers is significant for the rough problem of (5.3). If

the problem is smoother, the multiscale solvers are the method of choice as a rule of thumb.

For extremely small (compared to the mesh) time steps sizes, Jacobi is the method

of choice. For sufficiently big (compared to the mesh) time steps sizes, full multigrid is

the method of choice. In-between, the V -cycle is the fastest solver. For a time stepping

algorithm, this implies that for very tiny time steps and rough problems, there is no need

to tackle the resulting elliptic problem with a multiscale solver. For bigger time steps,

multiscale solvers exhibit their superiority.

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 125

5.3. Solution propagation

We next study the cooling process from (5.2) for d = 2. An implicit Euler acts as time

integrator due to the jump of the initial-boundary conditions, and we track the solution

at three different points in the space-time domain: (1

2
, 1

2
, 1

81
)T , (1

2
, 1

2
, 21

81
)T , and (1

2
, 1

2
, 40

81
)T .

The measurements in Fig. 5 present the normalised solution, i.e. the current approximation

divided by the converged result, for the three different points for three different solvers:

a classical time stepping with τ = 1/80 applying a V -cycle for each time step’s elliptic

problem, a V -cycle on the full regular space-time grid with h= 1/80 where the restriction

and prolongation operator act solely spatially, and a time full multigrid that starts with

a minimal adaptive space-time grid (Fig. 3) resolving the initial condition with h = 1/80

regularly. This F -cycle continues to refine the whole space-time domain until it ends up

with a regular h= 1/80 space-time grid.

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

|u
n
|/
|u

* |

Iterations

t= 1/81, time stepping
t=21/81, time stepping
t=40/81, time stepping

t= 1/81, V-cycle
t=21/81, V-cycle
t=40/81, V-cycle
t= 1/81, F-cycle
t=21/81, F-cycle
t=40/81, F-cycle

Figure 5: Convergen
e of three di�erent time integration s
hemes for three di�erent sample points.
With the time stepping, the value of (1

2
, 1

2
, 21

81
) does not start to converge towards to the

real solution before the 20 preceding time steps are solved (to convergence of the 20 time

slices, the solver needs approximately 120 V -cycles). For (1

2
, 1

2
, 40

81
)T , it is 40 time steps.

With a pure V -cycle and standard coarsening on the whole space-time domain, the test

point’s convergence is worse, as the individual time slices are exclusively coupled on the

finest grid. Due to the standard coarsening, two third of these time slices are processed

by a Jacobi solver only: time slice one and two for example are tackled by a pure Jacobi

smoother. The initial condition consequently has to be passed through these two slices be-

fore it affects the solution on the two-grid slice of time step three. The slower convergence

of Jacobi compared to a spatial V -cycle makes the subsequent time slices represent irrele-

vant equations until the first two Jacobi time slice has converged. This effect is the stronger

the further in the future the observation point is. A real V -cycle with standard coarsening

on the space-time domain consequently does not pay off. Semicoarsening would resolve

this problem but would induce a significant bigger total memory footprint.

The full multigrid in time gives a trend for the test points immediately, as it takes the

126 T. Weinzierl and T. Köppl

multiscale behaviour of the solution explicitly into account. However, the guess in the

test points overshoots the solution significantly. This is due to the fact that we chose a

linear time prolongation in (4.3), i.e. CP̂ = 1, which is far too optimistic. Instead, the time

prolongation should reproduce the exponential decrease derived from (4.2).

If an application outside of the solver is interested in rough guesses or trend delivered

on time, the holistic full multigrid with our adaptive space-time grid is of value. This effect

is the stronger the later the sample point’s time. The result after a few iterations is only

a good guess if the solution to the experiment is sufficiently smooth. Furthermore, a code

used for such rough guesses should take into account a more sophisticated interpolation

operator. However, the value of the technique in principle is demonstrated here.

5.4. Adaptivity and total runtime

Finally, we study the overall time to solution for the cooling process (5.1) and the

rotating heat source with our simple adaptivity criterion for d = 2. In the experimental

setups we always started with a regular grid for the initial time step, and the time stepping

applied V (1,1)-cycles to solve the individual elliptic problems.

The cooling process yields a very smooth solution in time (Fig. 4), and, hence, the

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 0.2 0.4 0.6 0.8 1

V
e
rt

ic
e
s

t

Cooling bar

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.2 0.4 0.6 0.8 1

V
e
rt

ic
e
s

t

Rotating heat source

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

t

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

tFigure 6: Number of verti
es and number of iterations per time step for a time stepping s
heme withdynami
 grid re�nement in spa
e. The horizontal threshold in the upper diagrams gives the numberof verti
es divided by 243 for the same experimental setting on a spa
e-time grid, i.e. divided by thenumber of time steps.

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 127

time stepping scheme reduces the overall number of vertices with the time advancing.

Furthermore, the number of iterations required per time step decreases (Fig. 6 as example

for one setup with initial mesh size h = 1

243
), as the solution diffuses. For the example

studied, the full multigrid yields a grid with 977240 vertices, i.e. the number of vertices

broken down to a single time step of the time stepping is by a factor of two smaller.

The rotating heat source yields a solution where the region of interest that requires

a high resolution does not disappear in time and, furthermore, moves throughout the

simulation (Fig. 3 for a snapshot and Fig. 4 for the space-time behaviour). Both the time

stepping and the space-time full multigrid adopt the space-time grid around the regions

of fast solution changes, i.e. around the stimulus. The number of vertices for the time

stepping trends to roughly 8000 (Fig. 6). While the number of vertices then remains in

the same order, the adaptivity criterion permanently removes vertices from the simulation

and adds additional vertices around the heat source. In contrast to the cooling bar, the

number of iterations required per time step does not decrease in time: the algorithm uses

the solution of the last time step as initial guess for the solution of the elliptic problem,

and this guess always lacks the information that the heat source already has moved on. A

space-time simulation run with the same experiment parameters yields a grid with 306972

vertices, i.e. the number of vertices broken down on a single time step of the time stepping

is by a factor of seven smaller than for the time stepping.

In a second experimental setup, the time stepping is allowed to evaluate a dynamic

time step size criterion and adopt the time step size. This criterion mirrors the space-time

adaptivity criterion. For the cooling process, the time stepping increases this step size as

the changes within one time interval become smaller and smaller. This is reasonable, as

the initial stimulus (initial condition) is damped further and further. Such a grid plotted

as grid sequence in time equals exactly the grid the space-time full multigrid derives. It is

similar to the discretisation in Fig. 3. For the rotating heat source, the time stepping cannot

increase the step size as the changes from one time interval to the next are not decreasing.

The time stepping has to use the same time step size permanently while the space-time

approach refines the grid in space and time only round the heat stimulus.

In terms of runtime, i.e. stencil evaluations, the time stepping outperforms the space-

time multigrid for the cooling process: If we select a start grid with h= 1

27
, the space-time

multigrid required 4.36 times more stencil evaluations than the corresponding time step-

ping scheme. If we select a start grid with h = 1

81
, the space-time multigrid required

6.76 times more stencil evaluations than the corresponding time stepping scheme. The

difference grew with more accurate mesh sizes, so we stopped the measurements. The

space-time multigrid cannot cope with a well-tailored time stepping for such smooth prob-

lems.

In terms of runtime, i.e. stencil evaluations, the time stepping also outperforms the

space-time multigrid for the rotating heat source: For a minimum mesh size of h= 1

27
, the

time stepping is faster than the full multigrid by a factor of 7.46. For a minimum mesh

size of h = 1

81
, the time stepping is faster than the full multigrid by a factor of 3.85. For

a minimum mesh size of h = 1

243
, the time stepping is faster than the full multigrid by a

factor of 2.10. The runtime gap closes with finer mesh sizes. Consequently, the space-time

128 T. Weinzierl and T. Köppl

multigrid is advantageous if and only if the number of vertices broken down on a time

stepping time step is significantly smaller (the solution is not smooth in time), if and only

if the time stepping scheme cannot choose large time steps due to some solution regions

with a very high activity (the solution is not smooth in space), and if and only if the time

stepping has to do a significant number of V -cycles per time slice.

6. Conclusion and outlook

Our space-time approach tackling the heat equation exploits the multi-frequency repre-

sentation which our full approximation storage scheme in combination with the k-spacetree

yields. With the whole problem at hand, the workload to be distributed among a parallel

computer exceeds the workload of a time stepping scheme by magnitudes. This makes

the approach a promising candidate for massively parallel systems. Here, our algorithm

queues into a long tradition of time parallelisation approaches. The algorithm’s adaptivity

in space and time makes it related to local time stepping schemes, and the implementation

of algorithms for steady cycle problems benefits from the fact that initial and terminal con-

dition are available at the same time. Due to the multiscale prolongation of the solution

in time, the algorithm is well-suited for challenges where a first guess of the solution’s

behaviour is important. Such requirements arise, e.g., in the context of computational

steering, fluid-structure interaction, or calibration. With the whole space-time discretisa-

tion at hand, the algorithmic paradigm finally is a promising candidate for all kinds of

reverse problems where it is important to be able to go back in time.

The runtime of the algorithm at the first glance is disappointing, as the time stepping

outperforms the holistic approach. However, three aspects put this shortcoming into per-

spective: First, we compared solely sequential runtimes. Parallel scalability is not taken

into account. Second, for sufficiently rough problems where the adaptivity gains impact

the performance gap closes. Third, the multigrid algorithm is far from being tuned. Actu-

ally, here is a substantial backlog demand for well-chosen prolongation operators in time.

The latter aspect is one of three natural extension points of this work. First, all the

multigrid ingredients such as prolongation in time, smoother, windowed relaxation, and

better choice of shape functions have to be studied in detail. Also, the whole aspect of

semi-coarsening may not be neglected on the long run. However, it is important to derive

schemes that coarse in time aggressively, as many applications and unanswered questions

demand for longer and longer simulation time intervals—the growth in time steps exceeds

the improvement in the spatial resolution. Besides the multigrid aspects, we second have

to study the parallel scalability of the approach. Here, the derivation of tailored load bal-

ancing metric, heuristics, and strategies is of special interest. Any load balancing approach

benefits from the fact that the space-time formulation yields more workload than a stan-

dard time stepping scheme. However, the fact that the workload “grows along the time

axis” as the solver continues to derive the space-time solution deserves special attention

for the load balancing. It either has to take this phenomenon into account explicitly or

has to perform a permanent rebalancing. The heat equation is an important building block

of many applications. Future work, finally, has to extend this model to more complex

A Geometric Space-Time Multigrid Algorithm for the Heat Equation 129

settings, application environments, and to new classes of problems where the space-time

discretisation shows its strengths. The h-adaptivity provided by the spacetree inherently

simplifies the handling of complicated computational domains. However, many problems

such as problems with jumping material coefficients or domain boundaries that are not

aligned with the coordinate axes require the solver to be able to handle different stencils

for different vertices as well. In such a case, the matrix-free realisation can be preserved,

while the need to store a stencil per vertex—perhaps in combination with a BoxMG-like [4]

approach—increases the memory footprint of the solver. This is turn reduces the maximum

size of a problem that can be handled in its space-time formulation on a single core—an

effect that has to be evaluated in future work.

Acknowledgments This publication is partially based on work supported by Award No. UK-

c0020, made by the King Abdullah University of Science and Technology (KAUST).

References

[1] M. R. Benioff and E. D. Lazowska. Report to the President. Computational Science: Ensuring

America’s Competitiveness. President’s Information Technology Advisory Committee, 2005.

[2] A. Borzì. Multigrid methods for parabolic distributed optimal control problems. J. Com-

put. Appl. Math. 157(2), pp. 365–382, 2003.

[3] Ch. Brandenburg, F. Lindemann, M. Ulbrich, and S. Ulbrich. Advanced numerical methods

for pde constrained optimization with application to optimal design in navier stokes flow.

In S. Engell, A. Griewank, M. Hinze, G. Leugering, R. Rannacher, V. Schulz, M. Ulbrich,

and S. Ulbrich, editors, Constrained Optimization and Optimal Control for Partial Differential

Equations, to appear. Birkhäuser Verlag, 2010.

[4] J. E. Dendy. Black box multigrid. J. Comput. Phys. 48(3), pp. 366–386, 1982.

[5] M. Gander and S. Vandewalle. On the Superlinear and Linear Convergence of the Parareal Al-

gorithm. In O. B. Widlund and D. E. Keyes, editors, Domain Decomposition Methods in Science

and Engineering XVI, volume 55 of LNCS, pp. 291–298. Springer-Verlag, Berlin Heidelberg,

2007.

[6] M. Griebel. Zur Lösung von Finite-Differenzen- und Finite-Element-Gleichungen mittels der

Hiearchischen-Transformations-Mehrgitter-Methode, volume 342/4/90 A. SFB-Bericht, Dis-

sertation, Technische Universität München, 1990.

[7] M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner

Skripten zur Numerik. Teubner, Habilitation, Technische Universität München, 1994.

[8] M. Griebel and D. Oeltz. A Sparse Grid Space-Time Discretization Scheme for Parabolic

Problems. Computing. 81(1), pp. 1–34, 2007.

[9] W. Hackbusch. Parabolic multi-grid methods. In R. Glowinski and J. L. Lions, editors, Com-

puting Methods in Applied Sciences and Engineering VI, pp. 189–197. North-Holland, 1984.

[10] G. Horton. The time-parallel multigrid method. Commun. Appl. Numer. M. 8(9), pp. 585–595,

1992.

[11] G. Horton and S. Vandewalle. A Space-Time Multigrid Method For Parabolic PDEs. Technical

report, Universität Erlangen, 1993.

[12] J. Janssen and S. Vandewalle. Multigrid waveform relaxation on spatial finite element

meshes: The discrete-time case. SIAM. J. Numer. Anal., 33, pp. 456–474, 1993.

[13] S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations. SIAM, 1989.

130 T. Weinzierl and T. Köppl

[14] J.M. Melenk and B.I. Wohlmuth. On residual-based a posteriori error estimation in hp-fem.

Adv. Comput. Math. 15, pp. 311–331, 2001.

[15] W. F. Mitchell and M. A. McClain. A survey of hp-adaptive strategies for elliptic partial dif-

ferential equations. In T. E. Simos, editor, Recent Advances in Computational and Applied

Mathematics, pp. 227–258. Springer-Verlag, Netherlands, 2011.

[16] H. van der Ven. An adaptive multitime multigrid algorithm for time-periodic flow simulations.

J. Comput. Phys. 227(10), pp. 5286–5303, 2008.

[17] T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids.

Verlag Dr. Hut, 2009.

[18] T. Weinzierl and M. Mehl. Peano – A Traversal and Storage Scheme for Octree-Like Adaptive

Cartesian Multiscale Grids. SIAM. J. Sci. Comput. 2010. accepted.

[19] D. E. Womble. A Time-Stepping Algorithm for Parallel Computers. SIAM. J. Sci. Stat. Comp.

11(5), pp. 824–837, 1990.

