
Numer. Math. Theor. Meth. Appl. Vol. 5, No. 1, pp. 1-18
doi: 10.4208/nmtma.2011.m12si01 February 2012

Multigrid Solution of a Lavrentiev-Regularized

State-Constrained Parabolic Control Problem

Alfio Borzì1,∗ and Sergio González Andrade2

1 Institut für Mathematik, Universität Würzburg, Campus Hubland Nord,

Emil-Fischer-Str. 30, 97074 Würzburg, Germany.
2 Research Group on Optimization, Departamento de Matemática, Escuela

Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador.

Received 01 December 2010; Accepted (in revised version) 05 May 2011

Available 21 December 2011

Abstract. A mesh-independent, robust, and accurate multigrid scheme to solve a linear
state-constrained parabolic optimal control problem is presented. We first consider a
Lavrentiev regularization of the state-constrained optimization problem. Then, a multi-
grid scheme is designed for the numerical solution of the regularized optimality system.
Central to this scheme is the construction of an iterative pointwise smoother which
can be formulated as a local semismooth Newton iteration. Results of numerical ex-
periments and theoretical twogrid local Fourier analysis estimates demonstrate that the
proposed scheme is able to solve parabolic state-constrained optimality systems with
textbook multigrid efficiency.
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1. Introduction

Optimal control of parabolic systems occurs in many application fields such as chemi-
cal reaction simulations and biomedical sciences, among other important fields [3, 4, 20].
These problems require the development of algorithms that are fast and robust with respect
to the optimization parameters. Recent developments [1–3, 10] show that a successful
framework to develop such algorithms is represented by space-time collective-smoothing
multigrid schemes. In fact, Fourier analysis estimates [6, 10] and results of numerical
experiments with linear [1] and nonlinear [3, 4, 10] parabolic control problems demon-
strate that space-time multigrid schemes provide optimal control solutions with mesh-
independent convergence and robustness with respect to the value of the control parame-
ters.
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Previous contributions to the multigrid solution of parabolic control problems [1, 4, 6,
8, 12] have focused on first-order time discretization, while higher-order space-time dis-
cretization and constraints on the control have been considered in [10]. In this contribu-
tion, the authors found that the Crank-Nicolson scheme is not a convenient choice while
multistep backward differencing schemes are advantageous in the design of very efficient
pointwise and linewise smoothers.

In this paper, we contribute to the field of space-time multigrid methods for the case of
parabolic optimal control problems with state-constraints and second-order space-time dis-
cretization. Our multigrid approach is formulated based on criteria proposed in [1, 2, 10]
combining space-time collective smoothing multigrid schemes and Lavrentiev regulariza-
tion [21,25]. In this framework, the smoothing procedures are pointwise iterative schemes
that update the optimization variables collectively and use projection to satisfy the inequal-
ity constraints. We show that these iterative schemes can be interpreted as local semis-
mooth Newton methods [13,23,24] applied to the regularized state-constrained problems.

In the next section, we formulate a state-constrained linear parabolic optimal control
problem. Further, we obtain a Lavrentiev regularization of the problem and characterize
the optimal solutions as solutions of the corresponding regularized optimality system. In
Section 3, we discuss a space-time second-order discretization of the optimality system. In
Section 4, we illustrate the space-time multigrid framework and focus on the construction
of an efficient pointwise smoother. In Section 5, we investigate the proposed smoother
using results of twogrid local Fourier analysis to discuss the convergence properties of the
multigrid scheme with the pointwise smoother. We obtain smoothing-factor and multigrid
convergence-factor estimates that predict typical textbook multigrid efficiency and robust-
ness with respect to the values of the control parameters. Further, we present novel insight
that shows that the resulting smoothers can be interpreted as local semismooth Newton
schemes. In Section 6, detailed numerical experiments are carried out. The numerical re-
sults demonstrate the ability of the proposed multigrid framework to provide efficient so-
lutions to state constrained linear parabolic optimal control problems. Besides, we discuss
the application of the receding-horizon methodology [3,14] to achieve long-time tracking
of a desired trajectory with state constraints. A section of conclusion completes this work.

2. A state-constrained parabolic optimal control problem

Optimal control problems are defined for the purpose of determining the optimal way
to influence dynamical systems towards a given task. Our optimal control problem consists
of a parabolic governing system, a distributed control mechanism, and a criterion defining
the cost functional, that models the purpose of the control and describes the cost of its ac-
tion. The formulation of an optimal control problem is then to minimize the cost functional
under the constraint given by the modeling equations. The solution to this problem is char-
acterized by first-order optimality conditions given by the optimality system. In particular,
we focus on state-constrained parabolic optimal control problems where the configura-
tion of the controlled system is subject to functional constraints. For a more general and
detailed discussion on optimal control problems see, e.g., [17,25].
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For the purpose of illustration, consider a plate of a given material which defines a two-
dimensional convex domain Ω. Let the state of the material y represent the temperature
distribution which is maintained equal to zero along the boundary ∂Ω. With y0 we denote
the initial temperature distribution, and we assume the presence of a given space-time
depending heating source f . The control mechanism is also a thermal source u, which is a
function of space and time. This system is governed by the following parabolic equation:





−∂t y +∆y = f in Q = Ω× (0, T ),

y = y0 on Ω× {t = 0},

y = 0 on Σ = ∂Ω× (0, T ).

(2.1)

We consider this parabolic process controlled through source terms with the purpose
of tracking a desired trajectory, given by yd ∈ L2(Q), and/or with the objective of reaching
a desired terminal state yT ∈ L2(Ω) at a given final time T . In order to achieve these
objectives, we formulate a distributed parabolic optimal control problem, governed by
(2.1), as follows




min
y,u

J(y,u) := α
2
‖y − yd‖

2
L2(Q)

+
β

2
‖y(·, T )− yT‖

2
L2(Ω)

+ ν
2
‖u‖2

L2(Q)
,

−∂t y +∆y = f + u in Q = Ω× (0, T ),

y = y0 on Ω× {t = 0},

y = 0 on Σ = ∂Ω× (0, T ).

(2.2)

Here, ν > 0 stands for the weight of the cost of the control, α ≥ 0 and β ≥ 0, with
α + β > 0, are control parameters, which allow us to achieve the proposed objectives.
Indeed, the case α = 1, β = 0 corresponds to tracking without terminal observation. With
α = 0, β = 1, the objective is to reach a given final target configuration without any
specification of the trajectory that should be followed. We assume that f , u ∈ L2(Q), and
we select an initial condition y0 ∈ H1

0(Ω).
In this paper, we are interested in state-constrained control problems. Thus, we require

the state y to satisfy additional criteria. A representative problem is given by bilateral
pointwise state constraints, which leads us to consider the following restrictions

y(x , t) ≤ y(x , t) ≤ y(x , t), a.e. in Q, (2.3)

where y and y are elements of C(Q) with y < y .
The solution approach to state-constrained optimal control problems through Lagrange

multipliers associated with the state constraint leads to technical difficulties [19, 21, 25].
For instance, if we consider functions y and y such that the admissible set is not empty,

then it is possible to show the existence of an optimal control u∗ ∈ L2(Q) with corre-
sponding optimal state y∗ ∈W (0, T ); see [21, 25]. However, in order to have a Lagrange
multiplier rule of Karush-Kuhn-Tucker type, we need y to be continuous and to satisfy a
Slater condition. In this case, we require continuity of the constraints y and y, and still we
need to assume further restrictions on the dimension of Ω; see [21].
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The main issue is that the Lagrange multipliers associated with the state constraints
are only regular Borel measures. This fact prevents us from using known approximation
techniques. In fact, to the best of our knowledge (at least in a finite difference context),
no approximation methods for such a class of functions is available. Therefore, we need
to discuss a regularization procedure for problem (2.2); see [19,21] and references given
there.

In this paper, we consider the Lavrentiev-type regularization approach because it el-
egantly accommodates in our framework. The Lavrentiev-type regularization consists in
approximating the pointwise state constraints y(x , t) ≤ y(x , t) ≤ y(x , t) by the following

y(x , t) ≤ y(x , t)−λu(x , t) ≤ y(x , t), a.e. in Q,

where λ > 0 is a small parameter. As a result of this procedure, we do not need to consider
further restrictions on the structure nor on the dimension of Ω to obtain sufficiently reg-
ular Lagrange multipliers for the regularized resulting problem. In fact, these associated
multipliers can be assumed to be functions in L2(Q); see [19,21].

Once we have relaxed the constraints, we introduce the auxiliary variable v := y −
λu and express the control function u in terms of v. Consequently, the state-constrained
optimal control problem becomes




min
y,v

J(y, v) := α
2
‖y − yd‖

2
L2(Q)

+
β

2
‖y(·, T )− yT‖

2
L2(Ω)

+ ν

2λ2 ‖y − v‖2
L2(Q)

,

−∂t y − y

λ
+∆y = f − v

λ
in Q = Ω× (0, T ),

y = y0 on Ω×{t = 0},

y = 0 on Σ = ∂Ω× (0, T ),

(2.4)

with the following bilateral pointwise restriction on v

y(x , t) ≤ v(x , t) ≤ y(x , t), a.e. in Q.

Notice that after the transformation, a regularized optimal control problem is obtained
having a “control-constrained” structure. Thanks to this substitution technique, we can
guarantee the existence of solutions for the problem (2.4), for every λ > 0. Moreover, we
are able to characterize the solution to this problem by the following optimality system
(e.g. [21, Th. 2.2])

−∂t y +∆y −
y

λ
+

v

λ
= f in Q, (2.5a)

y = 0 on Σ, (2.5b)

y = y0 on Ω× {t = 0}, (2.5c)

∂t p+∆p−
p

λ
+α (y − yd) +η (y − v) = 0 in Q, (2.5d)

p = 0 on Σ, (2.5e)

p = β (y − yT ) on Ω× {t = T}, (2.5f)
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p

λ
−η (y − v), w− v

�
≥ 0 in Q, (2.5g)

where η = ν/λ2 and the inequality (2.5g) must hold for all w ∈ Vad where

Vad = {v ∈ L2(Q) : y(x , t) ≤ v(x , t)≤ y(x , t), a.e. in Q}.

The convergence analysis of regularized solutions for vanishing Lavrentiev parameter
λ requires further regularity assumptions, that is out of the scope of this paper. However,
by following [19, 21], we state that it is possible to prove that the regularized solutions
of (2.4) converge to admissible solutions for (2.2) as λ → 0. Further, numerical experi-
ence demonstrates that whenever the ratio η = ν/λ2 is kept constant while reducing the
value of λ the computational performance of our multigrid solution procedure does not
deteriorate. This fact was also shown in [2] and deserves further investigation.

As stated before, the main advantage of using the Lavrentiev regularization is the fact
that we can avoid Borel measures in the optimality system. The associated Lagrange mul-
tipliers are functions in L2(Q) and the regularized systems can be solved using standard
discretization schemes. See [15] for an alternative approach.

3. Second-order space-time discretization

We consider second-order discretization schemes discussed in [10]. These schemes use
second-order backward differentiation formula (BDF2) together with the Crank–Nicolson
(CN) method in order to obtain a second-order time discretization scheme of the optimality
system.

To illustrate our approach, we use the framework in [9,11] and assume that the space
domain Ω is a square and Ωh is a uniform space mesh, where h is the mesh size, and Ωh

defines the set of interior mesh-points, (x i, y j) = ((i − 1)h, ( j − 1)h), 2 ≤ i, j ≤ Nx . On
this mesh, −∆h denotes the second-order accurate negative Laplacian approximated by
the common five-point stencil including homogeneous Dirichlet boundary conditions. For
grid functions vh and wh defined on Ωh, we have the discrete L2(Ω)-scalar product

(vh, wh)L2
h
(Ωh)
= h2
∑

x∈Ωh

vh(x)wh(x),

with associated norm |vh| = (vh, vh)
1/2
L2

h
(Ωh)

. Further, let δt = T/Nt be the time-step size and

define the following space-time mesh

Qh,δt = {(x , tm) : x ∈ Ωh, tm = (m− 1)δt, 1≤ m ≤ Nt + 1}.

For grid functions defined on Qh,δt , we use the discrete L2(Q) scalar product with norm

‖vh,δt‖= (vh,δt , vh,δt)
1/2
L2

h,δt
(Qh,δt )

.

On the Qh,δt grid, ym
h

and pm
h

denote grid functions at time level m. The action of the
one-step backward and forward time-discretization operator on these functions is defined
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as follows

∂ + ym
h

:=
ym

h
− ym−1

h

δt
and ∂ −pm

h
:= −

pm
h
− pm+1

h

δt
.

The action of the BDF2 time-difference operators is as follows

∂ +BD ym
h :=

3ym
h
− 4ym−1

h
+ ym−2

h

2δt
and ∂ −BDpm

h :=−
3pm

h
− 4pm+1

h
+ pm+2

h

2δt
.

The coefficients in the last two expressions above are given by the classical BDF2 formula
(see, e.g., [9]) while the minus sign in the second operator allows us to discretize the
adjoint variable taking into account its backward evolution in time. For simplicity, we as-
sume sufficient regularity of the data, yd , yT , and f , such that these functions are properly
approximated by their values at grid points.

With this setting, the following discrete optimality system is obtained

− ∂ +BD ym
h
+∆h ym

h
−

ym
h

λ
+

vm
h

λ
= f m

h
in Q, (3.1a)

∂ −BDpm
h +∆hpm

h −
pm

h

λ
+α (ym

h − ym
d,h) +η (y

m
h − vm

h ) = 0 in Q, (3.1b)
�

pm
h

λ
−η (ym

h − vm
h ), wm

h − vm
h

�
≥ 0 in Q, (3.1c)

where the inequality must hold for all w ∈ Y h
ad

and Y h
ad

is a grid function approximation of
the admissible set Yad .

As stated before, at t = δt, represented by m= 2, and at t = T −δt, given by m = Nt ,
we combine the multistep BDF2 method with the CN method.

4. The space-time multigrid framework

In this section, we discuss the extension of the space-time collective-smoothing multi-
grid strategy for parabolic optimal control problems [1–3,10] to the case of state-constraints
and second-order space-time discretization. We recall the space-time multigrid scheme that
belongs to the class of nonlinear full approximation storage (FAS) methods [7].

Consider L grid levels indexed by k = 1, · · · , L, where k = L refers to the finest grid.
The mesh of level k is denoted by Qk = Qhk ,δtk

where hk = h1/2
k−1 and δtk = δt, that

corresponds to semicoarsening in space. Any operator and variable defined on the discrete
space-time cylinder Qk is indexed by k. The optimality system at level k with given initial,
terminal, and boundary conditions is represented by the following equation

Ak(wk) = fk, wk = (yk,uk, pk). (4.1)

As well known [7,26], the multigrid strategy combines two complementary schemes. The
high-frequency components of the solution error are reduced by a smoothing iteration,
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denoted by Sk and defined in the following subsection, while the low-frequency error com-
ponents are effectively reduced by a coarse-grid correction method as defined below.

The action of one multigrid cycle applied to (4.1) is illustrated in the following algo-
rithm. Starting with an initial approximation w

(0)
k

, the result of one multigrid cycle for

solving Ak(wk) = fk is given by w
(ν1+ν2+1)
k

which is computed as follows.

Algorithm 4.1. Space-Time Multigrid (STMG) Cycle

1. Set the starting approximation w
(0)
k

;

2. If k = 1 solve Ak(wk) = fk exactly;

3. Pre-smoothing steps: w
(l)

k
= S(w

(l−1)
k

, fk), l = 1, · · · ,ν1;

4. Computation of the residual: rk = fk − Ak(w
(ν1)

k
);

5. Restriction of the residual: rk−1 = Ik−1
k

rk;

6. Set wk−1 = Îk−1
k

w
(ν1)

k
;

7. Set fk−1 = rk−1+ Ak−1(wk−1)

8. Call µ times the STMG scheme to solve Ak−1(wk−1) = fk−1;

9. Coarse-grid correction: w
(ν1+1)
k

= w
(ν1)

k
+ Ik

k−1(wk−1− Îk−1
k

w
(ν1)

k
);

10. Post-smoothing steps: w
(l)

k
= S(w

(l−1)
k

, fk), l = ν1 + 2, · · · ,ν1 + ν2 + 1;

11. End.

Notice that we can perform µ two-grid iterations at each working level. For µ = 1
we have a V (ν1,ν2)-cycle and for µ = 2 we have a W (ν1,ν2)-cycle; µ is called the cycle
index [26].

In our implementation, we choose Ik−1
k

to be the full-weighted restriction operator in
space with no averaging in the time direction [26]. The prolongation Ik

k−1 is defined by

bilinear interpolation in space, and we choose Îk−1
k

to be straight injection. The intergrid
transfer operators do not involve time since we are using semicoarsening.

4.1. A pointwise space-time smoothing scheme

A key component in the STMG Algorithm 4.1, is the smoothing scheme Sk. This
smoothing process must be efficient in solving high-frequency error components and ro-
bust with respect to the control parameters. We discuss a pointwise smoothing scheme for
state-constrained control problems.
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In order to develop the smoothing schemes, we write the discretized optimality system
(3.1) in expanded form, for a space-time grid point (i j m). For this purpose, let h= hk and
x ∈ Ωh, where x = (ih, jh) and (i, j) index the grid points, e.g., lexicographically. Denote
with ωi j the set of grid index pairs s, t of the stencil of ∆h centered at (i, j) excluding the
pair (i, j) itself. Using this notation, we can express the action of ∆h on the function vh in
the following compact form

∆hvh|i j =
1

h2



∑

s,t∈ωi j

vst − 4 vi j


 .

We next illustrate the construction of the smoothing algorithm for the BDF2 discretization,
i.e., we consider the optimality system (3.1) at the space-time grid points (i jm) for m =

3, · · · , Nt − 1. However, we point out that a similar discussion follows for m = 1 and
m= Nt , where the BDF2 and the CN discretization both appear in the optimality system.

Let us then start by setting

Ai jm =
∑

s,t∈ωi j

ym
st , Bi jm =
∑

s,t∈ωi j

pm
st ,

and introducing the following notations

Si jm := γAi jm + 2yi jm−1 −
1
2

yi jm−2 − δt fi j m,

Ri jm := γBi jm + 2pi jm+1 −
1
2

pi jm+2 − δt α yd i j m,

where γ := δt/h2. Notice that Ai jm and Bi jm are considered constant during the update of
the variables at (i jm).

Next, by calling a :=
�

3
2
+ 4γ+ δt

λ

�
, we can write the optimality system (3.1) at

(i, j, m) as follows

− a yi jm + Si jm+
δt

λ
vi jm = 0, (4.2a)

− a pi jm + Ri jm+ δt
�
α+η
�

yi jm − δtη vi jm = 0, (4.2b)
�

1

λ
pi jm−η (yi jm − vi jm)

�
(wi jm − vi jm)≥ 0, for all wh ∈ Vadh, (4.2c)

where Vadh = {v ∈ L2
h
(Qh) | y ≤ v ≤ y in Qh}. This is a nonlinear problem that includes

an inequality constraint. To solve this problem, we adapt the scheme proposed in [10] to
the case of state-constrained problems. This scheme is constructed by using a projection
procedure to satisfy the inequality constraint (4.2c). Moreover, in the next section, we
show that this approach can be interpreted as a local semismooth Newton method [13,23,
24].

Consider the equations (4.2a) and (4.2b). The Jacobian of these two equations and its
inverse are given by

Ji jm :=

�
−a 0

δt
�
α+η
�
−a

�
and J−1

i jm =
1

a2

�
−a 0

−δt
�
α+η
�
−a

�
, (4.3)
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respectively.
Now, for a given vi jm, a classical local Newton update for the state and adjoint variables
byi jm and bpi jm is given by

�
by
bp

�

i j m

=

�
y

p

�

i j m

+ J−1
i jm

�
ry(v)

rp(v)

�

i j m

, (4.4)

where ry(v) and rp(v) denote the residuals of the discrete state and adjoint equations,
which are given by the negative of (4.2a) and (4.2b), respectively. We point out that these
residuals are functions of the control.

Based on the Newton update, we can write byi jm and bpi jm as functions of vi jm as follows

byi jm(vi jm) = yi jm−
ry(vi jm)

a
,

bpi jm(vi jm) = pi jm+
−δt(α+η) ry(vi jm)− a rp(vi jm)

a2 .

(4.5)

Next, we compute the value of an auxiliary control variable that corresponds to the
control update in the case where no constraints on the control are present. We denote this
auxiliary control function with ṽi jm, which is defined as the solution to

1

λ
bpi jm(ṽi jm)−η (byi jm(ṽi jm)− ṽi jm) = 0. (4.6)

Now recall that the update to vi jm must satisfy the pointwise constraint y ≤ v ≤ y .
Therefore a feasible update is obtained by projection as follows

vi jm =





y i jm if ṽi jm ≥ y i jm,

ṽi jm if y
i jm
< ṽi jm < y i jm,

y
i jm

if ṽi jm ≤ y
i jm

.

(4.7)

With this updated control, we obtain new values for the adjoint and state variables using
the Newton mapping (4.5) as pi jm = bpi jm(vi jm) and yi jm = byi jm(vi jm), respectively.

In order to describe the smoothing algorithm, note that, by using (4.5), the expression
(4.6) can be rewritten as

Q i jm ṽi jm+
Ri jm

aλ
−
η

a
Si jm+

δt(α+η)

a2λ
Si jm = 0, (4.8)

where Q i jm is given by

Q i jm :=−
ηδt

aλ
+η+

δt

aλ

�
δt

aλ
(α+η)−η
�

.

Next, we define the following auxiliary magnitude

Ti jm := −η(byi jm − ev(0)i jm
) +
bpi jm

λ
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and calculate the update for evi jm as follows

ev(1)
i jm
= ev(0)

i jm
−Q−1

i jmTi jm. (4.9)

By using these definitions, we propose the following Collective Gauss-Seidel smoothing
algorithm.

Algorithm 4.2. Projected Time-Splitted Collective Gauss-Seidel Iteration (P-TS-CGS)

1. Set the starting approximation: w
(0)
i jm

:= (y(0)
i jm

, p
(0)
i jm
), with y

(0)
i j1 := y0.

2. For i j in, e.g., lexicographic order do

3. For m = 2 (t = δt), calculate y
(1)
i j2 , p

(1)
i j2 and v

(1)
i j2 , by using the corresponding CN-

BDF2 versions of (4.5), (4.7) and (4.9).

4. For m = 3, · · · , Nt − 1: compute (ry)i jm and (rp)i jm, and by using (4.5) calculate

byi jm and bpi jm. Next, obtain ev (1)
i jm

according with (4.9) and calculate the update for

the control v
(1)
i jm

by projection (4.7). Thus, calculate the update for the state variable

by:

y
(1)
i jm
= y

(0)
i jm
−
(bry)i jm

a
,

where (bry)i jm := a y
(0)
i jm
− Si jm−

δt

λ
v
(1)
i jm

.

5. For k = Nt − 1, · · · , 3 (backwards): compute (ry)i jk and (rp)i jk, and by using (4.5)

calculate byi jk and bpi jk. Next, obtain ev (1)
i jk

according with (4.9) and calculate the

update for the control v
(1)
i jk

by projection (4.7). Thus, calculate the update for the

adjoint variable by:

p
(1)
i jk
= p

(0)
i jk
+
−δt(α+η) (bry)i jk − a (brp)i jk

a2
,

where (bry)i jk := a y
(0)
i jk
−Si jk−

δt

λ
v
(1)
i jk

and (brp)i jk = a p
(0)
i jk
−Ri jk−δt
�
α+η
�

y
(0)
i jk
+

δtη v
(1)
i jk

.

6. For m= Nt (t = T −δt), calculate y
(1)
i jNt

, p
(1)
i jNt

and v
(1)
i jNt

, by using the corresponding

BDF2-CN versions of (4.5), (4.7) and (4.9).

7. For m = Nt + 1 (t = T), calculate y
(1)
i jNt+1

, p
(1)
i jNt+1

and v
(1)
i jNt+1

, by using the terminal

condition pi jNt+1
= β(yi jNt+1

− yT ), (4.5), (4.7) and (4.9).

8. End.
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5. Smoothing and convergence analysis

In this section, we use local Fourier analysis (LFA) [1, 26] to estimate the smooth-
ing factor µ(Sk) of the smoothing scheme described above, and the convergence factor
η(T Gk−1

k
) for the corresponding multigrid scheme. For this analysis, we consider the lin-

ear parabolic equation resulting from the Lavrentiev regularization. However, we require
that the state-constraints are not active since the LFA framework applies only to linear
problems. This means that the optimality condition is satisfied in the sense that we can
eliminate the variable v using the following

v = y −
λ

ν
p.

Using this equation in the state and adjoint equations, we obtain the optimality system
of the parabolic unconstrained case. Therefore in this case the LFA analysis provides the
same estimates obtained in [10], that we report in Table 1. We have that the smoothing
and convergence factors are almost independent of the value of the weight ν and of the
discretization parameter γ and obviously (because the constraints are considered inactive)
they do not depend on the Lavrentiev regularization parameter.Table 1: Smoothing fa
tor µ(Sk) and 
onvergen
e fa
tor η(T Gk−1

k
) for the TS-CGS multigrid s
heme(ν1 = ν2 = 1). Parameters: δt = 1/64, α = 1 and β = 0.

STMG
❍
❍
❍
❍
❍❍

γ

ν
10−8 10−6 10−4 10−2

32 0.2289 0.4843 0.4516 0.4493
µ(Sk) 48 0.3317 0.4737 0.4502 0.4486

64 0.4056 0.4677 0.4494 0.4483
32 0.0427 0.1317 0.1361 0.1347

η(T Gk−1
k
) 48 0.0822 0.1352 0.1354 0.1344

64 0.1147 0.1368 0.1350 0.1342

5.1. Smoothing iteration as a SSN method

Here, we analyze the application of a (local) semismooth Newton (SSN) method to
(4.2) to show that the resulting iterative scheme is equivalent to the P-TS-CGS scheme.
Notice that equation (4.2c) is equivalent to the following pointwise relation in Q [18]

v(x , t) =max

�
y(x , t), min

�
y(x , t), y(x , t)−

λ

ν
p(x , t)

��
, for ν > 0. (5.1)

We consider equation (5.1) at a grid point (i j m), and we rewrite (4.2) as the following
operator equation

Φ(yi jm, pi jm,ui jm) :=




−a yi jm + Si jm+
δt

λ
vi jm

−a pi jm + Ri jm+ δt(α+η)yi jm − δtη vi jm

vi jm−max
§

y
i jm

, min
¦

y i jm, yi jm −
λ

ν
pi jm

©ª


= 0. (5.2)
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We can state that both the max and min functions involved in (5.2) are semismooth.
Indeed, it is well known (see [13, Lem. 3.1]) that the mappings w 7→ max(0, w) and
w 7→min(0, w), from R to R, are Newton differentiable with Newton derivatives given by

Γmax :=

¨
1 if w ≥ 0,

0 if w < 0,
and Γmin :=

¨
1 if w ≤ 0,

0 if w > 0,
(5.3)

respectively. Thus, [24, Th. 4.6] implies that the third equation in (5.2) is Newton differ-
entiable, with respect to all variables (y, p, v), and its partial Newton derivatives are given
by

Γy := χA+ χA− , Γp :=−χA+ χA−
λ

ν
, Γv := 1,

where χA+ and χA− are defined by

χA+ :=





1 if min{y i jm, yi jm −
λ

ν
pi jm} ≥ y

i jm
,

0 if min{y i jm, yi jm −
λ

ν
pi jm} < y

i jm
,

(5.4a)

χA− :=

(
1 if yi jm −

λ

ν
pi jm ≤ y i jm,

0 if yi jm −
λ

ν
pi jm > y i jm.

(5.4b)

Consequently, we obtain the semismooth Newton step applied to the operator equation
(5.2) as follows



−a 0 δt

λ

δt(α+η) −a −δtη

−χA+ χA− χA+ χA−
λ

ν
1




i j m




δy

δp

δv




i j m

=




ry

rp

rv




i j m

. (5.5)

From this system we obtain the following update for the state and adjoint variables

�
y

p

�(1)

i j m

=

�
y

p

�(0)

i j m

+


 −a+ δt

λ
χA+ χA− −δt

ν
χA+ χA−

δt(α+η)− δt ηχA+ χA− −a+ δt

λ
χA+ χA−



(0) −1

i j m

�
bry

brp

�(0)

i j m

,

(5.6a)

where

(bry)i jm := (a y − S −
δt

λ
V )
(0)
i jm

,

(brp)i jm := (a p− R− δt(α+η)y + δtηV )
(0)
i jm

,

V
(0)
i jm

:=max

�
y

i jm
, min

�
y i jm, y

(0)
i jm
−
λ

ν
p
(0)
i jm

��
.
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The update for the control vi jm results as follows

v
(1)
i jm
= V

(0)
i jm
+χA+ χA− (δy)i jm−

λ

ν
χA+ χA− (δp)i jm. (5.6b)

Now, we show that one iteration step given by (5.6) is equivalent to one iteration of
the smoothing step described in the previous section. Also in the semismooth Newton
approach, the local SSN iteration must be performed in the forward time-direction to cal-
culate the updates for yi jm and in the backwards time-direction to calculate the updates
for pi jm.

Consider the three possible cases arising in (5.6b).

(i) yi jm−
λ

ν
pi jm > y i jm. Here, we have that χA− = 0, and we obtain that V

(0)
i jm

:= y i jm.

Therefore, from (5.6b), we obtain that v
(1)
i jm
= y i jm and, from (5.6a), the following

updates for yi jm and pi jm:

y
(1)
i jm
= y

(0)
i jm
+
(bry)i jm

−a
, p

(1)
i jm
= p

(0)
i jm
+
−δt(α+η) (bry)i jm− a (brp)i jm

a2
, (5.7)

respectively, where

(bry)i jm := a y
(0)
i jm
− Si jm−

δt

λ
y i jm,

(brp)i jm := a p
(0)
i jm
− Ri jm− δt(α+η)y

(0)
i jm
+ δtη y i jm.

(ii) yi jm −
λ

ν
pi jm < y

i jm
. In this case, we have that χA+ = 0, since min{y i jm, yi jm−

λ

ν
pi jm}

< ui jm. Hence, we have that V
(0)
i jm
= y

i jm
and (5.6b) implies that v

(1)
i jm
= y

i jm
. Further,

(5.6a) gives the following updates for yi jm and pi jm:

y
(1)
i jm
= y

(0)
i jm
+
(bry)i jm

−a
, p

(1)
i jm
= p

(0)
i jm
+
−δt(α+η) (bry)i jm− a (brp)i jm

a2 , (5.8)

respectively, where

(bry)i jm := a y
(0)
i jm
− Si jm+

δt

λ
y

i jm
,

(brp)i jm := a p
(0)
i jm
− Ri jm− δt(α+η)y

(0)
i jm
+ δtη y

i jm
.

(iii) y
i jm
≤ yi jm−

λ

ν
pi jm ≤ y i jm. In this case, we have that χA+ = χA− = 1. Thus, V

(0)
i jm
=

y
(0)
i jm
− λ
ν

p
(0)
i jm

and (5.6b) yields that

v
(1)
i jm
= y

(0)
i jm
−
λ

ν
p
(0)
i jm
+ (δy)i jm−

λ

ν
(δp)i jm

= y
(0)
i jm
−
λ

ν
p
(0)
i jm
+ (y

(1)
i jm
− y

(0)
i jm
)−
λ

ν
(p
(1)
i jm
− p

(0)
i jm
) (5.9)

= y
(1)
i jm
−
λ

ν
p
(1)
i jm

.
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From system (5.6a), we obtain the following updates for yi jm and pi jm

y
(1)
i jm
= y

(0)
i jm
+
(bry)i jm

−a
, p

(1)
i jm
= p

(0)
i jm
+
−δt(α+η) (bry)i jm− a (brp)i jm

a2 , (5.10)

respectively, where

(bry)i jm := a y
(0)
i jm
− Si jm +

δt

λ
v
(1)
i jm

,

(brp)i jm := a p
(0)
i jm
−Ri jm− δt(α+η)y

(0)
i jm
+ δtη v

(1)
i jm

.

Thus, since evi jm = yi jm −
λ

ν
pi jm, the equivalence between the SSN iteration and the P-TS-

CGS iteration is totally established by comparing the auxiliary residuals (bry)i jm and (brp)i jm

constructed in the two iterative process, and by considering the cases arising in the update
given by the projection procedure (4.7) and in the update given by (5.6b).

6. Numerical experiments

We report results of numerical experiments to validate our multigrid solution to state-
constrained parabolic control problems. We use W-cycles [7] with two pre- and post-
smoothing steps of the symmetric (i.e. a forward and a backward sweeps) version of the
smoothers described above with lexicographic ordering. For details regarding coarsening
of the variational inequality see [5, 16, 22]. W-cycles appear to be superior in the case of
active constraints [5,10]; for the present isotropic problems space-ordering is not essential
for convergence. Let Ω = (0,1)2 and a finest mesh given by 257× 257× 257. We will use
five levels in all the experiments. All unknown variables are initialized to be zero and we
choose f = 0.

First, we consider the desired state yd(x1, x2) = sin(2πt) sin(3πx1) sin(πx2) and the
constraints y(x) = −1/2 and y(x) = 1/2. We solve the tracking problem in the time

interval (0,1). In Fig. 1, the calculated state for the choice ν = 10−10 and λ = 10−5, at
t = T/4 and t = 3T/4, are depicted. Due to the form of the desired state, the constraints
are active in all the considered instants of time.

In Fig. 2, we report the convergence history for the smoothing scheme standalone and
for the multigrid scheme depicting the value of the sum of the L2-norm of the residuals.
We notice that during the first few iterations the smoothing scheme provides fast conver-
gence comparable to the first few multigrid cycles. This is symptomatic of initial solution
errors with many high-frequencies. Afterwards, we observe a slowdown that is also due
to the setting up of the active sets in the whole space-time domain. Further on, while the
smoothing scheme convergence becomes flat we obtain fast convergence behavior of the
multigrid with a typical superlinear convergence.

In Table 2 we report the observed convergence factors. We obtain the expected multi-
grid convergence factors, considering that we are taking values for ν ranging from 10−6 to
10−10 and ν = λ2. With ν held fixed and decreasing λ the resulting convergence factors
worsen.
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Figure 1: State-
onstrained problem. The state at t = T/4 (left) an at t = 3T/4 (right).Parameters: α= 1, β = 0, ν = 10−10 and λ= 10−5.
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Figure 2: Convergen
e history for smoothing only (dashed) and multigrid W (2,2)-
y
le (solidline). Parameters: ν = 10−10 and λ= 10−5.Table 2: Convergen
e fa
tors for ν = λ2.
mesh λ= 10−3 λ= 10−4 λ= 10−5

64× 64× 64 0.057 0.085 0.028
128× 128× 128 0.050 0.094 0.012
257× 257× 257 0.045 0.056 0.115

When studying parabolic control problems, it is of particular interest to track a desired
trajectory over long-time intervals. Following results in [3, 10], we propose the combi-
nation of our multigrid method with receding-horizon techniques to solve this concern.
Therefore, we use the receding-horizon algorithm developed in [3, Sect. 3.2] in order to
show the ability of this approach to track over long-time intervals also in the presence of
state-constraints.

We test the receding-horizon algorithm by solving the state-constrained problem with
the following desired trajectory yd(x1, x2, t) := t sin(2πt) sin(πx1) sin(πx2) and pointwise
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constraints given by y = −1 and y = 1. We study the tracking of the given trajectory, over
the time interval (0,4), considering 8 time windows of size ∆t = 0.5.

In this case, the optimal control problem is solved to the required tolerance, on a grid
with γ= 64, by 8 STMG-W(2,2)-cycles, in each time window. We take α = 1 and β = 10−4.
Taking bigger values for β results in a worsening of the convergence behavior. In Fig. 3,
the time evolution of the state variable compared to the desired trajectory is depicted.

0 1 2 3 4
−4

−1

0 

1

4 

 

 

y

yd

Figure 3: Re
eding-horizon te
hnique for a state-
onstrained problem. Time evolution of thestate y (solid line) and the desired traje
tory yd (dots) at (x1, x2) = (0.5,0.5). Parameters:
α= 1, β = 10−4, ν = 10−6 and λ = 10−3.

7. Conclusions

A multigrid scheme to solve state-constrained linear parabolic optimal control problems
was presented. This approach defines collective smoothing steps that combine local New-
ton update with projection through the gradient of the reduced cost functional to overcome
the lack of differentiability due to the presence of inequality constraints. Besides, we have
proved that these collective-smoothing iterations can be formulated as local semismooth
Newton methods.

Results of numerical experiments were presented to show that the resulting multi-
grid schemes provide typical multigrid computational efficiency whenever the value of the
weight of the cost of the control ν is of the same order as λ2. Deterioration of conver-
gence behavior may occur when the Lavrentiev regularization parameter λ becomes too
small with respect to ν . This convergence behavior suggests that there is a theoretical
relationship between ν and λ which leads the iteration to fast convergence.
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