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Abstract. Centroidal Voronoi tessellations (CVTs) have become a useful tool in many

applications ranging from geometric modeling, image and data analysis, and numerical

partial differential equations, to problems in physics, astrophysics, chemistry, and biol-

ogy. In this paper, we briefly review the CVT concept and a few of its generalizations and

well-known properties. We then present an overview of recent advances in both math-

ematical and computational studies and in practical applications of CVTs. Whenever

possible, we point out some outstanding issues that still need investigating.
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1. Introduction

A comprehensive study of centroidal Voronoi tessellations (CVTs) was provided in the

1999 review article [31]. While the CVT concept initially was phrased as a model and

method for optimal point distributions and spacial tessellations of regions/volumes in Rd

or within sets of discrete data, the generality and universality of CVTs have also made

them widely applicable in many fields of science and engineering. In the past decade,

CVTs and CVT-based methodologies attracted much attentions in the community. Not only

significant progress has been made in the theoretical study of the CVTs, but there also
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has been tremendous growth in the scientific and technological applications of CVTs. The

purpose of this paper is to reflect upon past progress and to point out some interesting

issues that still need to be resolved.

Given the vast literature published on the subject, it is impossible to give a complete

survey; instead, we focus on works with which we are most familiar to offer a brief and

limited overview of the recent advances in mathematical and computational studies and in

practical applications of CVTs. Needless to say, the subject of CVTs is still growing rapidly,

so we also point out some outstanding issues and future research topics that remain to be

studied.

The paper is organized as follows, in the remainder of this section, we go over the

CVT concept and a few of its basic properties. Then, in Section 2, we discuss several

generalizations of the basic CVT concept and, in Section 3, we discuss recent progress in

the development of improved, i.e., more efficient algorithms, for constructing CVTs. In

Section 4, we discuss a very few of the many and ever growing applications to which CVTs

have been put to effective use. Brief concluding remarks are given in Section 5.

1.1. The CVT concept in Rd

We first recall the definition of CVTs in Euclidean space. We begin with a given open

bounded domain Ω ∈ Rd and a set of distinct points {xi}
n
i=1
⊂ Ω. For each point xi ,

i = 1, · · · , n, define the corresponding Voronoi region Vi , i = 1, · · · , n, by

Vi =
n

x ∈ Ω | ‖x− xi‖ < ‖x− x j‖ for j = 1, · · · , n and j 6= i
o

, (1.1)

where ‖ · ‖ denotes the Euclidean distance (the L2 metric) in Rd . Clearly Vi ∩ Vj = ; for

i 6= j, and ∪n
i=1V i = Ω so that {Vi}

n
i=1 is a tessellation of Ω. We refer to {Vi}

n
i=1 as the

Voronoi tessellation (VT) of Ω [97] associated with the point set {xi}
n
i=1. A point xi is

called a generator; a subdomain Vi ⊂ Ω is referred to as the Voronoi region (or Voronoi

diagram) corresponding to the generator xi. It is well-known that the dual tessellation (in

a graph-theoretical sense) to a Voronoi tessellation of Ω is the Delaunay triangulation (DT).

Given a density function ρ(x) ≥ 0 defined on Ω, for any region V ⊂ Ω, the standard

mass center (or centroid) x∗ of V is given by

x∗ =

∫

V

xρ(x) dx

∫

V

ρ(x) dx

. (1.2)

Then a special family of Voronoi tessellations are defined as follows.

Definition 1. [31]We refer to a Voronoi tessellation {(xi, Vi)}
n
i=1

ofΩ as a centroidal Voronoi

tessellation (CVT) if and only if the points {xi}
n
i=1 which serve as the generators of the as-

sociated Voronoi regions {Vi}
n
i=1 are also the centroids of those regions, i.e., if and only if we

have that xi = x∗i for i = 1, · · · , n. The corresponding dual triangulation is called a centroidal

Voronoi Delaunay triangulation (CVDT).
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Figure 1: [31℄ A Voronoi tessellation of the unit square with 10 generators (the dots) randomly sele
ted(the 
ir
les denote the 
entroids whi
h do not 
oin
ide with the generators) and a 10-point 
entroidalVoronoi tessellation of the square for a uniform density.
A generic Voronoi tessellation does not satisfy the CVT property in general; see Fig. 1

for an illustration. On the other hand, given a density ρ and a number of generators n, the

CVT of a domain always exists though it may not be unique.

1.2. Basic properties of CVT

CVTs possess an optimization property that can be used as a basis for their various

extensions. Given any set of points eX= {exi}
n
i=1

in Ω and any tessellation eV = {eVi}
n
i=1

of Ω,

define a clustering energy by

K
�eX, eV) =

n∑

i=1

∫

eVi

ρ(x)‖x−exi‖
2 dx . (1.3)

Then it can be shown that K is minimized only if {(exi, eVi)}
n
i=1

forms a CVT of Ω. We remark

that if {(exi , eVi)}
n
i=1

forms a CVT it does not necessarily minimize K; e.g., they may define

a saddle point [31]. The energy functional K is often naturally associated with quantities

such as quantization error, variance and cost in many applications.

CVTs can be constructed either using probabilistic methods typified by MacQueen’s

random algorithm [87] or deterministic methods typified by Lloyd’s method [83]. Asymp-

totically as the number of generators gets larger and larger, Gersho’s Conjecture [55]

states that the optimal CVT (in the sense of minimizing the energy) forms a regular tes-

sellation consisting of the replication of a single polytope whose shape depends only on

the spatial dimension. The regular hexagon provides a confirmation of the conjecture in

two dimensions for the case of CVTs associated with a constant density [92]. For the

three-dimensional case, it was proved that among all lattice-based CVTs, the CVT corre-

sponding to the body-centered cubic lattice D∗3 (its Voronoi regions are the space-filling

truncated octahedra) is the optimal one [18]. For more general, non-lattice cases with non-

constant densities, the question remains open, although extensive numerical simulations

given in [47] demonstrated that the truncated octahedra is the likely candidate.
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2. Generalizations of Centroidal Voronoi Tessellations

The CVT concept can be generalized to very broad settings that range from abstract

spaces and distance metrics to discrete point sets [31]. Some of these generalizations are

reviewed below.

2.1. CVTs of surfaces

To incorporate constraints on the generators into CVTs, the notion of constrained CVTs

was first considered in [32] for the mesh generation setting using a mixed variational

formulation. A more systematic extension of the CVT concept to surfaces (or manifolds)

was considered in [36] under the Euclidean metric.

Suppose that S is a compact and continuous hyper-surface in Rd+1, then for any region

V ⊂ Ω, we call xc a constrained mass center of V if

xc = arg min
x∈V

∫

V

ρ(y)‖y− x‖2 dy . (2.1)

Existence of minimizers of the problem (2.1) can be easily obtained using the continuity

and compactness of the objective function; however, solutions may not be unique depend-

ing on the curvature of V . It is worth noting that if S is a flat surface, then xc coincides

with x∗, the standard mass center of V .

Definition 2. [36] We refer to a Voronoi tessellation {(xi , Vi)}
n
i=1 of a surface S as a con-

strained centroidal Voronoi tessellation (CCVT) if and only if we have that xi = xc
i

for

i = 1, · · · , n. The corresponding dual triangulation is called a constrained centroidal Voronoi

Delaunay triangulation (CCVDT).

In particular, when Ω is the surface of a sphere, we call {(xi , Vi)}
n
i=1 a spherical cen-

troidal Voronoi tessellation (SCVT). Fig. 2 presents some sample CCVTs on the a sphere and

torus where, in the case of a sphere, the construction of spherical Voronoi diagrams was

efficiently implemented based on Lloyd’s method with the help of the software package

“STRIPACK” [106].

Figure 2: [36℄ CCVT point pla
ement on surfa
es. From left to right: 
entroidal Voronoi 
ells for 2562points on the sphere distributed uniformly and non-uniformly, 256 points on a torus surfa
e distributeduniformly and non-uniformly, respe
tively.
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Figure 3: [Courtesy of Hoa Nguyen℄ From left to right: CVTs with a uniform density under the L1metri
, the L20 metri
 (approximating the L∞ metri
), and the triangle metri
.
2.2. CVTs under other metrics

CVTs may be defined for metrics other than the Euclidean distance. For example, in

Fig. 3, we give examples of CVTs of a square under the L1(Ω), L20(Ω), and a triangle

metrics. Probabilistic algorithms for the construction of CVTs are especially useful for such

metrics because such methods rely only on determining the distance between points and

not on the explicit construction of Voronoi diagrams or of centers of mass; see Section 3.2.

2.3. CVTs of line segments

Generalized Voronoi tessellations for which the generators are line segments or areas

are defined in [97]. In [66], line segment generators were used for stippling applica-

tions. Generalization of the CVT concept to line segments and graphs via a variational

characterization was proposed in [85]. Such a generalization is likely to have several ap-

plications such as skeleton fitting and segmentation and vector field visualization [51]. Let

E = {ei = [xi1
,xi2
]}n

i=1
denote a set of line segments having end points in X ⊂ Ω. The

Voronoi region Vei
in Ω associated with the segment ei = [xi1

,xi2
] is defined by

Vei
=
�
x ∈ Ω | d(x, ei) < d(x, e j) for j = 1, · · · , n and j 6= i

	
, (2.2)

where d(x, ei) denotes the Euclidean distance from the point x to the segment ei. The

clustering energy with respect to a line segment ei = [xi1
,xi2
] can be defined as Fs(ei) =∫

Vei

d2(x, ei)dx. Then the Voronoi tessellation V = {Vei
}ni=1 of Ω associated with the line

segments (E,X) is called a CVT [85] if X is a minimizer of the following energy

Fs

�
X
�
=
∑

ei∈E

Fs(ei). (2.3)

We specially note that the connectivity information E is pre-given and fixed in the mini-

mization. In addition, only the uniform density is considered in this case. Some efficient

approximation algorithms for computing Voronoi regions of line segments and the con-

struction of CVTs of line segments were proposed in [85].
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Figure 4: [Courtesy of Hoa Nguyen℄ Left pair: VT of initial distribution of line segments and �nalCVT 
on�guration; right pair: VT of initial distribution of points and line segments and �nal CVT
on�guration.
Examples of CVTs for line segment and mixed line segment/point generators are pre-

sented in Fig. 4.

2.4. Anisotropic CVTs

To account for more general Riemannian metric, the concept of anisotropic centroidal

Voronoi tessellation was proposed in [46]; see also [94]. Let p ∈ Ω be a point, then

a metric tensor at P refers to a symmetric positive matrix (tensor) M(p) which induces a

Riemannian structure on Ω, denoted by (Ω, M(p)). We may define the following directional

distance from q to p as

dp(p,q) =
p
~pqT M(p) ~pq. (2.4)

This directional distance between p and q can be interpreted as a Riemannian distance

between the two points, with the metric being a constant metric given by M(p). In contrast

to the usual distance definitions, this directional distance is not symmetric. The anisotropic

Voronoi region (AVR) Vj corresponding to the point xi is then defined by

Vi =
n

x ∈ Ω | dx(x,xi)< dx(x,x j), for j = 1, · · · , n and j 6= i
o

. (2.5)

Then {Vi}
K
i=1 forms an anisotropic Voronoi tessellation (AVT) of Ω. Note that AVRs may

not be a polygonal or convex or singly-connected. An anisotropic energy on a region V can

be defined as Fa(x) =
∫

V
d2

y (y,x)dy, and consequently the anisotropic mass center xa of V

is given by

xa =

�∫

V

M(x) dx

�−1�∫

V

(M(x),x) dx

�
(2.6)

which minimizes Fa(x). We note that, in contrast to standard CVTs, the density of AVTs

can be mixed with the Riemannian metric M .

Definition 3. [46] An anisotropic Voronoi tessellation {(xi , Vi)}
n
i=1 of a domain Ω under the

metric tensor M and the directional distance function dp is called an anisotropic centroidal

Voronoi tessellation (ACVT) if xi = xa
i
, i = 1, · · · , n. The corresponding dual triangulation is

referred to as the anisotropic centroidal Voronoi Delaunay triangulation (ACVDT).
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Figure 5: [46℄ ACVTs of a 
ir
le (left) and a square (right) with some metri
 tensors.
A corresponding minimization property can be derived for ACVTs under the following

energy:

Fa

�eX, eV
�
=

n∑

i=1

∫

eVi

d2
x (x, x̃i)dx. (2.7)

Numerical examples were provided in [46] together with an application to surface

anisotropic meshing. Fig. 5 presents some sample ACVTs produced by the algorithms pro-

vided there. See Section 4.3 for additional examples .

The idea of a one-sided distance was used again in the work of [51] for CVT-based

vector field simplification and visualization.

Interestingly, the one-sided distance can also be used to define a different notion of

anisotropic Voronoi regions via

Vi =
n

x ∈ Ω | dxi
(xi,x) < dx j

(x j ,x), for j = 1, · · · , n and j 6= i
o

. (2.8)

The associated anisotropic Voronoi tessellations have been discussed in [77]. One can nat-

urally define the corresponding anisotropic centroidal Voronoi tessellations. Note that this

includes the special cases of weighted centroidal Voronoi tessellations, that is, {dxi
(xi,x) =

mi‖x− xi‖} for some constants {mi}, as well as ones that use general covariance matrices

{Mi} to {dxi
(xi,x) = (x− xi)

T Mi(x− xi)}. The latter has been used in [50] to connect the

generalized Lloyd’s iterations to the mixture clustering models for data mining.

More generally, the two types of anistropic Voronoi tessellations can all be unified

through the so call Bregman Voronoi tessellations and one can thus discuss a more general

centroidal Bregaman Voronoi tessellations, see [93] for more details.

3. Algorithmic advances

Along with many applications whose number and diversity are still growing, significant

advances have been made in the design of efficient and robust algorithms for computing

CVTs [27,28,70,75,82] and in their convergence analysis [28,29,52,53].
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3.1. Convergence of Lloyd’s method

Due to its effectiveness and simplicity, much attention has been focused on Lloyd’s

method.

Algorithm 1. (Lloyd’s Method) Given a domain Ω, a density function ρ defined on Ω,

and a positive integer n.

0. Select an initial set of n points {xi}
n
i=1

on Ω;

1. Construct the Voronoi regions {Vi}
n
i=1

of Ω associated with {xi}
n
i=1

;

2. Determine the centroids (or constrained centroids) of the Voronoi regions {Vi}
n
i=1; these

centroids form the new set of points {xi}
n
i=1;

3. If the new points meet some convergence criterion, return {(xi , Vi)}
n
i=1

and terminate;

otherwise, go to Step 1.

The Lloyd algorithm is also called the k-means algorithm in the clustering and quan-

tization fields [58, 75]. It is worth noting that the energy K associated with the Voronoi

tessellation decreases monotonically during Lloyd iterations until a CVT is reached [31].

Let the Lloyd map be the mapping from a set of distinct generators X = (x1, · · · ,xn) ∈
Ωn ⊂ Rn×d to the corresponding centroids, defined by T= (T1, · · · ,Tn)

T such that

Ti(X) =

∫

Vi(X)

xρ(x) dx

∫

Vi(X)

ρ(x)dx

, i = 1, · · ·n, (3.1)

where Vi(X) denotes the Voronoi region corresponding to xi of the Voronoi tessellation

having X as its generators. Then the Lloyd’s algorithm may be viewed as a fixed point

iteration of the Lloyd map: X(k+1) = T(X(k)). Let us define a new energy function H by

H(X,Y) := K(Y,V(X)) =

n∑

i=1

∫

Vi(X)

ρ(x)‖x− xi‖
2 dx. (3.2)

Then Lloyd’s method is in fact an alternating variable algorithm for minimizing H, i.e.,

one alternates between minimizing H(X,Y) with respect to X and Y [27]. Since Lloyd’s

pioneering work, many studies have been made on the convergence properties of the Lloyd

iteration. Most notably, in [54] and later in [74], it was shown that the Lloyd iteration is a

local contraction (thus locally convergent) in one dimension provided the density function

is logarithmically concave, i.e., (logρ)′′ < 0. This result was extended to all continuous and

positive densities in the one-dimensional setting of scalar quantization in [120]. In higher

dimensions, convergence results are much more limited. In [59,115], convergence of the

energy function was shown by defining values of the Lloyd map on degenerate points.
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On the other hand, in [29, 53], the authors applied the theory of descent methods

to Lloyd’s method without any extension to degenerate points by showing that points of

degeneracy locally maximize the energy. This is necessary to ensure that limit points are

in fact CVTs. It was proved in [29] that if the iterates in the Lloyd method stay in a compact

set where the Lloyd map T is continuous, then the algorithm is weakly globally convergent,

i.e., any limit point of {X(k)}∞
k=0

is a critical point of G, where G(X) = H(X,X) is called the

quantization energy of X. The compactness of the iteration seems to be intuitively true,

but it has not been rigorously justified in the literature. The difficulty lies in showing that

during the Lloyd iteration the generators do not get arbitrarily close as the Lloyd map is

not well defined at degenerate points where some of the generators may coincide [86]. In

one dimension, for Ω = [a, b] and a smooth density function ρ > 0, it was shown in [29]

that

min
i=1,··· ,n

diam(Vi(X
(k)))>

b− a

2n42n−1(Mc)
n

for k > n,

where Mc = maxx∈Ωρ(x)/minx∈Ωρ(x) and consequently Lloyd’s method is weakly glob-

ally convergent. For higher dimensional spaces, it was recently proved in [53] that any

limit point of the Lloyd iteration in any dimension is non-degenerate provided that Ω is a

convex and bounded set and ρ belongs to L1(Ω) and is positive almost everywhere. Practi-

cally, this ensures that any limit point of the algorithm does generate a CVT. Note that the

regularity requirement on the density function in [53] is much relaxed.

3.2. Probabilistic Lloyd algorithms and their parallel implementation

Efficient and robust construction of CVTs are crucial to the success of utilizing the CVT

concept in various applications. Among the advantages of the CVT methodology is that

points may be easily distributed according to a prescribed density function and the algo-

rithms which make up the methodology are amenable to parallelization. This was partly

accomplished in [70] where some superior probabilistic CVT construction algorithms were

introduced, implemented, and tested. These algorithms can be viewed as generalizations

of both the simple MacQueen random and Lloyd deterministic algorithms, thus we call

them probabilistic Lloyd algorithms. The key to the efficiency of the new methods is that

many points are sampled and clustered before each averaging step is performed. It is very

important to point out that these probabilistic algorithms do not require, at any stage,

the construction of Voronoi diagrams nor the determination of the centroids of the Voronoi

cells. Moreover, the algorithms are highly amenable to fully scalable parallelization, as was

demonstrated in [70]. Fig. 6 shows results of some experiments carried out for one of the

probabilistic Lloyd algorithms in [70]. We see from the figure the nearly perfect speed up

of the algorithm, independent of the density function ρ. The methods presented constitute

a very efficient methodology for constructing CVTs and, as a result, in many applications

they render the CVT concept superior to other approaches.
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3.3. Multi-level and Newton-type methods

Like many iterative methods, the performance of Lloyd’s method depends on the ini-

tial guess for the generators. Some good initialization processes can improve the speed

and results of the Lloyd iteration [91]. Meanwhile, it was also known that the reduc-

tion of the errors in the Lloyd iteration eventually slows down as the iteration number

increases [28,31] because the errors become more smoothly distributed over the domain.

To accelerate its local convergence, a nonlinear multilevel energy-based quantization al-

gorithm was proposed and analyzed in [28] which combines the Lloyd iteration, a spatial

decomposition and a multilevel successive subspace corrections. Each of the correction

procedures involves solving a system of nonlinear equations. The multilevel algorithm

performs well in accelerating convergence near a local minimum but it does not change

the linear convergence nature nor helps with the global energy minimization.

Given the linear convergence of Lloyd-like methods [29,31], there have been much ef-

fort directed at developing effective algorithms having higher convergence rates. In [27],

a Lloyd-Newton algorithm was proposed to accelerate the construction of CVTs. The main

idea is that one first runs the standard Lloyd algorithm until either the change in the energy

G or the change in the displacements of the generators between two (or more) successive

iterates is small, then one switches to a Newton iteration. The Newton algorithms are gen-

erally quadratically convergent but are also very sensitive to the initial guess. In practice,

the Newton iteration in [27] takes the form

X(k+1) = X(k)+ (dT(X(k))− I)−1(X(k)− T(X(k))). (3.3)

Note that dT denotes the Jacobian matrix of T (an nd × nd matrix) with its ((i − 1)d +

m, (l − 1)n+ j)-th entry given by ∂ Tm
i
/∂ xl

j
, where Tm

i
denotes the m-th component of Ti

and xl
j

the l-th component of x j . Major concerns about the Newton algorithm include the

storage of dT and the solution process for the resulting large-scale linear system when the

number of generator n is very large.
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To avoid the computation and storage of the Jacobian matrix in the Newton iteration,

it was suggested in [31] that Newton-like or quasi-Newton method can be a better alterna-

tive. This is achieved in a recent work of [82] based on the preconditioned limited memory

BFGS (L-BFGS) method [81]. In addition, the authors proved that G is C2 (i.e., T is C1)

in any convex domain in the two or three dimension with a C2 smooth density function;

when the domain is non-convex, G is still C2 in most cases except for some cases rarely

encountered in practice where it becomes C1. This provides the necessary justification for

developing efficient Newton or quasi-Newton methods for accelerating CVT computations.

Fast performance and super robustness of this method was shown by extensive experimen-

tal examples in various cases in two- and three-dimensional examples.

4. Progress in applications of Centroidal Voronoi Tessellations

CVT-based techniques have proven to be very useful in diverse applications, includ-

ing but not limited to, image processing and analysis [20, 26, 38, 51, 57, 103, 122], vector

quantization and data analysis [50,55,56,58–60,79], resource optimization [31], optimal

placement of sensors and actuators for control [24,31], cell biology and territorial behavior

of animals [8], model reduction [11,12,33,34,78], point sampling [13,30,98,108,116],

numerical quadrature [61], meshless computing [21,35], mesh generation and optimiza-

tion [1, 2, 32, 36, 44–47, 49, 69, 89, 94, 95, 117, 121], numerical partial differential equa-

tions [32,37,40–43,67,71–73,95,121], geophysical flows [80,107,109], computer graph-

ics [5,17,19,39,62,66,82,82,82,111,113,117–119], mobile sensing networks [10,22,24],

logistics system design [99,100], and phyllotaxis [64,65]. Obviously we cannot review all

of these applications so we content ourselves with a representative sample.

4.1. Mesh generation and optimization

Mesh generation often forms a crucial part of the numerical solution procedure in many

applications, especially numerical partial differential equations (PDEs) based applications.

For unstructured mesh generation, some of the well-studied techniques include advancing

front technique [84], Octree [114], Voronoi/Delaunay-based methods [7,16,25,112], and

DistMesh [105]. When CVT/CVDT is applied to the numerical solution of PDEs, some mod-

ifications are needed to handle geometric constraints; for example, an obvious one is that

some of the CVT generators (vertices of the corresponding CVDT) have to be constrained

to lie on the boundary of the domain so that the boundary conditions of the problem can

be enforced. For this purpose, [32] discussed various approaches to deal with generators

on the boundary, including projections from the interior to boundary or lifting from the

boundary to the interior or a mixed variational formulation. Various modifications to the

Lloyd’s method were also presented. Extensions to three dimensions and optimizations in

combination with vertex/face swappings were studied in [1, 44, 45, 48] to improve mesh

quality; see Fig. 7 for some sample CVDT meshes in three dimensions. A brief overview of

the generation of three-dimensional constrained CVDT meshes can be found in [49].
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Figure 7: [44℄ Three-dimensional CVDT meshes of a 
ube (left pair) and a more 
ompli
ated domain(right pair).
In [69, 71], the concept of conforming CVT/CVDT was proposed with regard to these

constraints which further elaborated the mixed energy minimization formulation given

in [32]. Assume that the domain Ω is compact and ∂Ω is piecewise smooth with singu-

lar/corner points PS = {xi}
k
i=1

. Denote by Proj(x) the process that projects x ∈ Ω to the

point on the boundary closest to x. Denote by PI the set of generators whose Voronoi re-

gions are interior to Ω and by PB the set of generators whose Voronoi regions extend to the

boundary.

Definition 4. [69] A Voronoi Tessellation {(xi , Vi)}
n
i=1 of Ω is called a conforming centroidal

Voronoi tessellation (CfCVT) if the following properties are satisfied:

• PS ⊂ {xi}
n
i=1; • xi = x∗i if xi ∈ PI ; • xi = Proj(x∗i ) if xi ∈ PB − PS .

The dual triangulation is called a conforming centroidal Voronoi Delaunay triangulation

(CfCVDT).

A special lifting process [69, 71] is added during the Lloyd iteration that allows the

boundary generators to return to the interior domain together with the projection pro-

cess so that the number of boundary generators can vary freely according to the density

function. Thus the dependence of resulting CfCVDT meshes on the initial guess is greatly

weakened. Fig. 8 presents some sample CfCVDT meshes in two dimensions. Quality com-

parisons of the CfCVDT meshing scheme with some other triangular mesh generators are

done in [94] and shows the superiority of this method in most cases.

In addition, CVT/CCVT based techniques have been used for mesh generation for nu-

merical PDEs and surface re-meshing and optimization in the field of computer graph-

ics [5,17,91,103,117–119,121].
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Figure 8: [69℄ Two-dimensional CfCVDT meshes for various domains and density fun
tions.
4.2. CVT-based finite volume and finite element methods

Finite volume methods in the plane are widely used in engineering applications. A

Voronoi-based finite volume scheme for the discretization of PDEs on the sphere was de-

veloped based on spherical Voronoi tessellations [37]. For a model convection-diffusion

problem, the Voronoi-based finite volume scheme is shown to produce first-order accu-

rate approximations with respect to a mesh-dependent discrete first-derivative norm, and

in particular, the L2 error of the approximation is of quadratic order when the under-

lying Voronoi mesh is given by a spherical centroidal Voronoi tessellation (SCVT) [43].

Moreover, superconvergence of the approximate solutions was also numerically demon-

strated. In [42] another novel finite volume discretization scheme was developed for the

approximations of a reduced Ginzburg-Landau phenomenological model for superconduct-

ing hollow spheres based on SCVT [42] and used to study the behavior of the quantized

vortices [41] on a spherical geometry. The scheme utilizes the properties of the SCVT and

the discrete gauge invariance automatically is satisfied to accurately compute the various

solution branches, vortex nucleation patterns and vortex dynamics on the sphere.

Figure 9: [109℄ Left pair: the original digital image of the kineti
 energy in the North Atlanti
 and the
orresponding SCVDT mesh; right pair: A nonuniform SCVT mesh (de
omposed for parallel simulation)and the kineti
 energy �eld at day 10 of the simulation based on this mesh.
Stimulated by the above results, nonuniform SCVT/SCVDT grids were recently stud-

ied and applied for ocean and ice modeling in [109]; see Fig. 9 (left) for SCVDT grids

for the North Atlantic where the fourth power of the kinetic energy was used as a proxy

to define the density function used in the SCVT/SCVDT construction. It suffices to note

that SCVT/SCVDT grids take very good advantage of whatever proxy one chooses. The
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density function as well as the need to resolve boundaries motivate the variations in the

grid size. Numerical examples reported in [109] based on the nonlinear shallow-water

equations spanning the entire surface of the sphere elucidate both the potential benefits

of this variable-resolution method and the challenges ahead; see Fig. 9 (right) that shows

the parallel simulation result of a standard shallow-water test case (test case 5 of [123]

for which a flow in geostrophic balance is confronted with a large-scale orographic feature

at the start of the simulation) on a nonuniform SCVT mesh using Voronoi-based finite vol-

ume discretization. This example clearly illustrates both the potential benefits of this SCVT

based multi-resolution method and the challenges ahead.

Given the superior quality of the CVT/CVDT mesh, it is not a coincidence that the re-

sulting finite volume methods exhibit superconvergent properties as observed in [43]. Sim-

ilar studies on the superconvergence of finite element solutions based on the CVT/CVDT

meshes were presented in [67].

4.3. CVT-based adaptive algorithms for numerical PDEs

Adaptive finite element and finite volume methods for the numerical solution of PDEs

have been well developed in the past decades [4, 90]. The essential ingredients are a

posteriori error estimates and mesh refinement (or possible coarsening) schemes. The

key step of adaptive methods is to choose reliable and efficient error estimators to refine

the old mesh such that the errors of the approximate solutions on the new mesh can be

distributed as uniformly as possible and the numerical solution converges to the analytic

solutions with simple complexity when the mesh size goes to zero.

Adaptive finite element methods based on the CVT/CVDT meshes have been proposed

in [32]. An interesting asymptotic relation between the density function and the local

mesh size of a CVT is given by

hi/h j ≈
�
ρ(x j)/ρ(xi)
�1/(d+2)

, (4.1)

where hi denotes the diameter of the Voronoi region Vi corresponding to xi . We remark that

(4.1) is still a conjecture in spaces with d ≥ 2 but has been numerically verified by extensive

experiments and is widely assumed in practical applications such as vector quantization

and image processing [58]. The main idea of CVT/CVDT based adaptive algorithms is

to first refine the old mesh and then optimize the mesh using the CVT/CVDT algorithms

according to either the solution norms given in [32] or some other local a posteriori error

estimators [68, 71]. One can explicitly determine a density function ρ based on some a

posteriori error estimator and the CVT mesh size relation (4.1) to generate the new mesh so

that the errors of the new approximate solution will be equally distributed over the element

in an optimal way [32,68,71]. In particular, an efficient nearest neighbor search algorithm

proposed in [3] was used in [71] for the fast construction of the piecewise-smooth density

function ρ over the triangulated domain. It is worth noting that the density function ρ

and the resulting meshes could be different if different error estimators are used for the

same problem, e.g., H1-type vs. L2-type estimators. Another advantage of these methods

is that the resulting CVT/CVDT mesh always has good quality while most mesh adaptivity
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methods often degenerate the mesh quality to some extent as one refines. The study of

CVT-based adaptive meshing methods has been done for second-order elliptic PDEs [71,73]

and the steady Navier-Stokes equations [72]. A numerical example from [71] is given in

Fig. 10.

Superconvergence based a posterior error estimator was further developed in [68] for

CVT/CVDT based meshes, utilizing their superconvergence properties as shown in [67].

This leads to another CVT/CVDT based adaptive finite element algorithm for numerical

PDEs. For a number of model second-order elliptic problems with complex geometries and

various singular solutions, the convergence of the adaptive algorithm was demonstrated

in [68].

For convection-dominated problems, one often encounters the difficulty that the over-

all accuracy of the numerical approximation is deteriorated by local singularities such as

interior and boundary layers or sharp shock-like fronts. It is thus interesting to connect

the density function to a posteriori error estimates and anisotropic metrics for determining

point distributions with special properties such as high aspect ratio spacings that would

be useful for resolving boundary layers. Such an adaptive anisotropic meshing scheme for

solving two-dimensional steady convection-dominated problems was developed in [95], in

particular, the meshes are generated by the ACVDT algorithm [46] in combination with

metric tensor information at each level of refinement. Some preliminary results have

shown that the adaptive ACVT approach results in substantial improvements compared

to using regular isotropic CVT meshes; see Fig. 11 for an illustration. The metric ten-

Figure 11: [95℄ An ACVDT mesh (left), the zoomed one (middle) and the approximate solution (right)generated by the ACVDT-based adaptive algorithm for a 
onve
tion-dominated problem that has aninterior layer.
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sors are computed from the approximate solutions at each level using a formula suggested

in [63].

4.4. CVT-based model reduction

Solutions of nonlinear complex systems such as those governed by systems of nonlinear

partial differential equations are expensive with respect to both storage and CPU costs.

As a result, it is difficult if not impossible to deal with a number of situations such as

continuation or homotopy methods for computing state solutions, parametric studies of

state solutions, optimization and control problems multiple state solutions), and real-time

feedback control settings. Not surprisingly, a lot of attention has been paid to reducing

the costs of the nonlinear state solutions by using reduced-order models for the state, i.e.,

low-dimensional approximations to the state.

The type of reduced-order modeling we have in mind proceeds along the following

lines. One first chooses a reduced basis {ui}
K
i=1

; K is hopefully very small compared to the

usual number of degrees of freedom encountered in a finite element method. Next, one

seeks an approximation eu to the state of the form

eu=
K∑

i=1

ciui ∈ V ≡ span{u1, · · · ,uK}.

Then, one determines the coefficients {ci}
K
i=1 by solving the state equations in the set V ,

e.g., one could find a Galerkin solution of the state equations in a standard way, using V

for the space of approximations; the cost of such a computation would be very small if d

is small (ignoring the cost of the off-line determination of the reduced basis {ui}
K
i=1

.)

The remaining question is how does one determine the reduced basis? Typically one

begins by generating a set of snapshots. The state of a complex system is determined

by parameters that appear in the specification of a mathematical model for the system.

Snapshot sets consist of (expensive computational or, in principle, even experimental) state

solutions corresponding to several parameter values and/or evaluated at several values

time instants. Thus, typically, snapshots are very high-dimensional vectors of coefficients

or nodal values that determine the approximate solution of the PDE obtained by a finite

element or other method.

In some approaches, the snapshot set itself forms the reduced basis [88,96,102]. How-

ever, in some instances, snapshot sets contain lots of redundant information which we

would like to remove. In this sense, we are faced with a data compression problem, namely,

how do we extract a very low-dimensional basis set that captures the information contained

in a snapshot set that may have cardinality in the hundreds or even thousands? One popu-

lar approach for this purpose is the proper orthogonal decomposition method [14, 76, 110]

which is a projection method closely related to the singular value decomposition.

Alternately, one can apply the CVT concept which is a clustering approach to data

compression. From a given snapshot set {U j}
J
j=1

of vectors in RN , N ≫ 1, a smaller set

of vectors {ui}
K
i=1, K ≪ J , also belonging to RN , that are the generators of a CVT. The
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Figure 12: [11℄ For two typi
al Navier-Stokes problems, the L2 di�eren
e between a CVT redu
ed basissolution (based on 500 snapshots) and the solution obtained using a �nite element method (using about5,000 degrees of freedom) vs. time and the number of redu
ed basis ve
tors.
set {ui}

K
i=1 is then the basis used for reduced order modeling. This basis is optimal in the

sense that it minimizes the clustering energy for the given set of snapshots. In Fig. 12 we

reproduce, for two typical flow examples, plots given in [11] for the error vs. time for

different choices for the number of CVT reduced basis vectors K .

We have already mentioned in Sections 2.3 and 2.2 that the concept of centroidal

Voronoi tessellations can be extended to more general notions of Voronoi generators and

distance. This allows us to combine POD and CVT with the goal of taking advantage of

the best features of both approaches. In [33, 34], the CVT concept was combined with

the POD method into the hybrid CVOD method for model reduction. Briefly, the Voronoi

generators and therefore centroids are defined by the POD basis, i.e., they are the space

spanned by those vectors, within the Voronoi tessellations which contain subspaces formed

from snapshots. The CVOD concept has been further studied in [11, 12, 78, 104] for a

variety of physical models including the nonlinear Burger’s equation and the Navier-Stokes

equations. However, there remains much to be done to realize the full potential of the

CVOD method.

4.5. CVT-based image segmentation and analysis

The classical image segmentation methods can be categorized into two major classes:

edge-based methods such as edge detection and thresholding, and region-based models such

as region growth and level set based active contour methods [23]. CVT-based image seg-

mentation methods fall into the latter category. In its simplest form, the basic CVT model

reduces to the well-known k-means clustering technique. However, by viewing the latter

within the CVT context, very useful generalizations and improvements can be easily made.

Some CVT-based algorithms were discussed in [38] for image compression and segmenta-

tion and multichannel image restoration, including the incorporation of cluster-dependent

weights, the incorporation of averaging techniques to treat noisy images, and extensions

to treat multichannel data. A CVT-based technique, called VOronoi Image SEgmentation

(VOISE) [57], was successfully applied to the automatic detection and segmentation of
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Jupiter’s auroral emissions. The algorithm consists of an iterative procedure that dynam-

ically constructs a tessellation of the image plane based on a Voronoi diagram, until the

intensity of the underlying image within each region is classified as homogeneous. The

computed tessellations allow the extraction of quantitative information about the auroral

features. Other application of CVT-based image analysis methods include adaptive spatial

binning of integral-field spectroscopic data [20] and of X-Ray data [26].

More recently, an edge-weighted CVT (EWCVT) model for image segmentation was pro-

posed in [122]; in particular, this new model combines the image intensity information

together with the length of cluster boundaries and can handle very sophisticated situa-

tions. In the EWCVT model, the objective energy – the edge-weighted clustering energy bE,

consists of two parts, the classical clustering energy Ec similar to (1.3) (but in the dis-

crete sense) in color space and the weighted total length of the boundaries Eb between

clusters, i.e., bE = Ec + Eb. The second component is also called the edge energy which is

defined to be the weighted summation over every pixel p of the image of the number of

pixels in a certain neighborhood N(p, r) of p but belonging to a different cluster. Extensive

image segmentation experiments were presented in [122] to demonstrate the efficiency,

effectiveness, robustness, and flexibility of the EWCVT-based method. An example result is

provided in Fig. 13.

Figure 13: [122] Dete
tion of land from the �Europe-at-night� image using the EWCVT model. Fromleft to right: the original image, the initial segmentation, an intermediate segmentation, and the �nalsegmentation.
5. Concluding remarks

Although tremendous progress, as briefly summarized in this paper, has been made in

the last decade on the generalization, construction, and analysis of CVTs, there are still

many interesting questions waiting to be answered. Naturally, there is also no doubt that,

in the future, there will be many more fields of application in which CVTs will play a

prominent role.
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