
Numer. Math. Theor. Meth. Appl. Vol. 3, No. 3, pp. 245-275

doi: 10.4208/nmtma.2010.33.1 August 2010

REVIEW ARTICLE

Preconditioners for Incompressible Navier-Stokes Solvers†

A. Segal, M. ur Rehman and C. Vuik∗

Delft University of Technology, Delft Institute of Applied Mathematics and J.M.

Burgerscentrum, Mekelweg 4, 2628 CD, Delft, The Netherlands.

Received 30 September 2009; Accepted (in revised version) 27 January 2010

Available online 2 July 2010

Abstract. In this paper we give an overview of the present state of fast solvers for the

solution of the incompressible Navier-Stokes equations discretized by the finite element

method and linearized by Newton or Picard’s method. It is shown that block precon-

ditioners form an excellent approach for the solution, however if the grids are not to

fine preconditioning with a Saddle point ILU matrix (SILU) may be an attractive al-

ternative. The applicability of all methods to stabilized elements is investigated. In

case of the stand-alone Stokes equations special preconditioners increase the efficiency

considerably.

AMS subject classifications: 65F10, 65N30, 76D05

Key words: Navier-Stokes equations, finite element method, block preconditioners, SIMPLE-type

schemes, iterative methods, incompressible fluids.

1. Introduction

The numerical solution of the incompressible Navier-Stokes equations has been a chal-

lenge for over 50 years. Was the attention in the early days focused on the discretization,

nowadays efficient solution is a hot topic.

In this paper we deal with efficient solution of the stationary, laminar incompressible

Navier-Stokes equations, discretized by the finite element method. Due to the absence of

the pressure in the continuity equation, discretization of these equations requires special

care. Finite element approximations can not be chosen at random, but the elements must

satisfy the Ladyshenskaya-Brezzi-Babuška (LBB) condition in order to guarantee stability of

the discretization [1, 2]. This condition usually requires an approximation of the velocity

†This paper is presented at the International Conference on Preconditioning Techniques for Scientific and

Industrial Applications, August 24-26, 2009, Hong Kong.
∗Corresponding author. Email addresses: a.segal�tudelft.nl (A. Segal), mehfoozrehman�gmail.
om
(M. ur Rehman), 
.vuik�tudelft.nl (C. Vuik)

http://www.global-sci.org/nmtma 245 c©2010 Global-Science Press



246 A. Segal, M. ur Rehman and C. Vuik

that is one degree higher than that of the pressure. Most elements satisfying the LBB

condition have a quadratic velocity approximation [3].

The alternative is to stabilize the elements by adapting the continuity equation in some

way, thus allowing for example equal order interpolation [4]. Although such an approx-

imation makes the implementation more easy, in general the price to be paid is a less

accurate pressure.

Solution of the non-linear Navier-Stokes equations requires a suitable linearization

technique like Newton or Picard (successive substitution) [3]. The result is a system of

linear equations of saddle-point type, containing a zero block on the main diagonal corre-

sponding to the continuity equation. Direct solution of such a system requires a suitable

renumbering technique to avoid zero pivots [5]. A possible way of avoiding this problem

is to segregate pressure and velocity computation. An approach in this direction is the so-

called penalty function approach [3], which has been successfully applied to medium-sized

2d problems. Due to the presence of the penalty parameter, the condition of the linear sys-

tem is very high and iterative solution is impossible. The alternative is to use Uzawa-type

iteration schemes, which unfortunately converge very slowly [6].

During the last decade various iterative solution techniques to solve saddle-point type

equations, have been the subject of research. Some methods are focused on clever renum-

bering schemes in combination with a classical iterative approach, like for example the

SILU scheme [5] and ILU schemes proposed by Wille et al. [7–9].

Other methods are based on segregation. The system of equations is split into a ve-

locity and a pressure part. The complete system is solved by an iterative method, but the

necessary preconditioner is based on the splitting. We distinguish between block precon-

ditioners and preconditioners based on the classical SIMPLE method of Patankar [10]. A

number of block-preconditioners have been devised, for example the Pressure-Convection

Diffusion commutator (PCD) of Kay, Logan and Wathen [11, 12], the Least Squares Com-

mutator (LSC) by Elman, Howle, Shadid, Shuttleworth and Tuminaro [13], the Augmented

Lagrangian Approach (AL) of Benzi and Olshanskii [14], the Artificial Compressibility (AC)

preconditioner [15] and the Grad-Div (GD) preconditioner [15]. For an overview of block

preconditioners, we refer to [16–18].

SIMPLE-type preconditioners form a different class of preconditioners, although they

can also be considered as a block preconditioner. Besides the standard SIMPLE precondi-

tioner, also improvements like SIMPLER and variants have been developed.

In this paper we present a survey of the most popular solvers for the incompressible

Navier-Stokes equations. In the case of the incompressible Stokes equations, we derive

some special methods, that outperform the generally applicable solvers. New in this pa-

per is that we investigate the possibility to extend all solvers to stabilized elements. Fur-

thermore we discuss termination criteria and propose a method to improve these criteria.

Solvers are compared on the basis of implementation issues, dependence on tuning param-

eters and numerical experiments.

The remaining part of this paper is as follows. In Section 2 the discretization of the

incompressible Navier-Stokes by the Finite element discretization is considered. Section 3

deals with block preconditioners and in Section 4 SIMPLE and its variants are discussed. In



Preconditioners for Incompressible Navier-Stokes Solvers 247

Section 5 we study the modified ILU preconditioner SILU, which is an alternative for block

preconditioners. Section 6 treats special methods for the Stokes equations and Section 7

handles the important issue of termination criteria. In Section 8 some of these precondi-

tioners are compared based on the solution of some standard benchmark problems. Finally

in Section 9 we give our conclusions.

2. The incompressible Navier-Stokes equations

We consider the steady state Navier-Stokes equations for the incompressible flow of a

Newtonian, viscous fluid, with constant viscosity:

− ν∇2u+ u · ∇u+∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

where Ω is a 2 or 3 dimensional bounded domain with a piecewise smooth boundary ∂Ω,

u is the fluid velocity, p is the pressure field, ν > 0 is the kinematic viscosity coefficient (in-

versely proportional to the Reynolds number Re), ∇ the gradient and ∇· is the divergence

operator. In Section 6 we shall also consider the case of variable viscosity.

Eq. (2.1) represents conservation of momentum, while Eq. (2.2) represents mass con-

servation (incompressibility condition). The boundary value problem we consider, is the

system (2.1) and (2.2) posed on Ω, together with boundary conditions on ∂Ω = ∂ΩE∪∂ΩN

given by

u =w on ∂ΩE , ν
∂ u

∂ n
− np = 0 on ∂ΩN ,

or a combination of Dirichlet and Neumann boundary conditions.

The discretization of the Navier-Stokes equations is done through the finite element

method. The weak formulation of the Navier-Stokes equations is given by: find u ∈ H1
E

and p ∈ L2(Ω) such that

ν

∫

Ω

∇u :∇vdΩ+

∫

Ω

(u · ∇u) · vdΩ+

∫

Ω

p · ∇vdΩ

=

∫

Ω

f · vdΩ, ∀v ∈ H1
E0

, (2.3)

∫

Ω

(∇ ·u)qdΩ = 0, ∀q ∈ L2(Ω), (2.4)

where H1
E is the Sobolev space of functions satisfying the essential boundary conditions,

H1
E0

the Sobolev space of functions that satisfy homogeneous essential boundary condi-

tions, and : denotes the dyadic product.

For a discrete weak formulation we define finite dimensional subspaces Xh
0 ⊂ H1

E0
,

Mh ⊂ L2(Ω), and Xh
E ⊂ H1

E . The discrete version of (2.3) and (2.4) is: find uh ∈ Xh
E and



248 A. Segal, M. ur Rehman and C. Vuik

ph ∈ Mh such that

ν

∫

Ω

∇uh :∇vhdΩ+

∫

Ω

(uh · ∇uh) · vhdΩ−

∫

Ω

ph(∇ · vh)dΩ

=

∫

Ω

f · vhdΩ, ∀vh ∈ Xh
0, (2.5)

∫

Ω

(∇ · uh)qhdΩ= 0, ∀qh ∈ Mh. (2.6)

Formally, the system of non-linear equations can be written as

Au+ N(u)+ BT p = f, (2.7)

Bu = g, (2.8)

where Au is the discretization of the viscous term, N(u) the discretization of the nonlinear

convective term, Bu denotes the discretization of the negative divergence of u, and BT p is

the discretization of the gradient of p. The right-hand side vectors f and g contain all the

contributions of the source term, the boundary integral, as well as the contribution of the

prescribed boundary conditions.

Systems of the form (2.7)-(2.8) are called saddle-point problems. Due to the absence

of the pressure term in Eq. (2.8), the system of equations may be under-determined for

an arbitrary combination of pressure and velocity unknowns. In order to guarantee a

unique solution of Eqs. (2.7)-(2.8), the finite element discretization should satisfy the

Ladyshenskaya-Brezzi-Babuška (LBB) condition formally defined by

inf
qh∈Mh

sup
vh∈X h

0

(∇ · vh,qh)

‖vh‖X h
0
‖qh‖Mh

≥ γ > 0. (2.9)

In practice Eq. (2.9) is hard to verify, but Fortin [2] has given a simple method to check

the LBB condition. The practical consequence of this condition is that most stable elements

have a quadratic velocity and a linear pressure approximation.

Finite elements for the incompressible Navier-Stokes equations are distinguished in a

group with continuous pressure, Taylor-Hood elements [19], and the set of discontinuous

pressure, Crouzeix Raviart [20] elements.

If a finite element does not satisfy the LBB condition, solution of (2.7), (2.8) is only pos-

sible by applying stabilization techniques [18]. A typical example of a stabilized element

is the so-called mini-element consisting of a linear pressure approximation and a velocity

that is approximated by a linear polynomial extended with a bubble function [21]. The

internal point in this Taylor-Hood element is usually eliminated, so that this element has

the appearance of an equal order element.

The resulting non-linear equations are linearized as part of an iteration process (2.7),

(2.8). Common linearization methods are Picard and Newton or variants of these. After



Preconditioners for Incompressible Navier-Stokes Solvers 249

linearization the system can be written as

�

F BT

B C

��

u

p

�

=

�

f

g

�

, (2.10)

where F contains the contributions from the viscous part as well as the linearized con-

vection term. The system matrix of (2.10) is indefinite and non-symmetric. The matrix

C corresponds to the stabilization term and is zero in case of elements satisfying the LBB

condition. The eigenvalues of F have a positive real part, but the eigenvalues of C are

either zero or have a negative real part. Therefore classical iterative methods usually have

convergence problems for those systems.

In the remainder of this paper we shall mostly be concerned with stable elements

(C = 0). Elements denoted by Q2−Q1 are Taylor-Hood elements with quadratic velocity

and linear pressure approximation for either quadrilaterals (2D) or hexahedrons (3D).

Q2− P1 elements belong to the Crouzeix Raviart family also with quadratic velocity and

linear pressure.

3. Block preconditioners

Block preconditioners are based on an LDU decomposition of the coefficient matrix

(2.10):

A =LbDbUb =

�

F BT

B C

�

=

�

I 0

BF−1 I

��

F 0

0 S

��

I F−1BT

0 I

�

, (3.1)

where S = C − BF−1BT is the Schur complement matrix. Most preconditioners are based

on a combination of these blocks and a suitable approximation of the Schur complement

matrix. In this section we consider preconditioners based on DbUb factors known as block

triangular preconditioners:

Pt =

�

F BT

0 S

�

. (3.2)

It is an easy exercise to show that the eigenvalues of the system (2.10), premultiplied by

the inverse of the preconditioner (3.2) are all equal to 1 and as a consequence GMRES

converges in two iterations provided exact arithmetic is used [22]. Of course computing

F−1 and S−1 is impractical due to storage and CPU requirements. Therefore all variants of

block triangular preconditioners contain a cheap approximation of S. The system Fu = f

is solved approximately, usually by a small number of iterations with an iterative method.

Application of the preconditioner (3.2) involves solving the system Ptz = r, where z =

[z1; z2] and r = [r1; r2], implies the steps in Algorithm 3.1.

The Schur complement S is not formed, but approximated by a simple matrix. How

this approximation is done defines the various block preconditioners. Below we consider

some of the more popular methods.



250 A. Segal, M. ur Rehman and C. VuikAlgorithm 3.1: Perform Ptz = r1. Solve Sz2 = r22. update r1 = r1 − BT z23. Solve Fz1 = r1

3.1. Pressure-convection diffusion preconditioner

The convection diffusion operator [11] defined on the velocity space can be written as

L = −ν∇2 +wh · ∇, (3.3)

where wh is the approximation to the discrete velocity, computed in the most recent Picard

iteration. Suppose, that the commutator of this operator, ǫ, multiplied by the gradient op-

erator, on the velocity space, and the gradient operator, acting on the convection diffusion

operator in the pressure space (Lp), is small.

ǫ =L∇−∇Lp. (3.4)

Then the discrete commutator in terms of finite element matrices defined by

ǫh = (Q
−1
v F)(Q−1

v BT )− (Q−1
v BT )(Q−1

p Fp), (3.5)

might also be small. Fp is a discrete convection-diffusion operator on pressure space.

Qv denotes the velocity mass matrix and Qp the pressure mass matrix. The multiplica-

tion by Q−1
v and Q−1

p , transforms quantities from integrated values to nodal values. Pre-

multiplication of (3.5) by BF−1Qv, post-multiplication by F−1
p Qp and assuming that the

commutator is small, leads to the Schur approximation

BF−1BT ≈ BQ−1
v BT F−1

p Qp. (3.6)

The expensive part BQ−1
v BT in (3.6) is replaced by its spectral equivalent matrix Ap known

as the pressure Laplacian matrix, so

S = C − BF−1BT ≈ C −ApF−1
p Qp. (3.7)

The preconditioner (3.2), (3.7) is known as the Pressure Convection Diffusion (PCD) pre-

conditioner. The convergence of this preconditioner combined with a Krylov method is very

good for enclosed flows if the equations are linearized by the Picard method. The precondi-

tioner leads to many iterations for inflow/outflow problems. The reason might be that the

approximation of BQ−1BT with Ap is only well-defined for enclosed flow problems [18].

Boundary conditions are treated such that Ap and Fp are computed with Neumann bound-

ary conditions for an enclosed flow problem. However, in inflow/outflow problems, rows

and columns of Ap and Fp corresponding to pressure nodes on an inflow boundary are

treated as though they are associated with Dirichlet boundary conditions [18]. One of the

main disadvantages of PCD is the necessity to construct the matrices Ap and Fp and the

definition of boundary conditions for the pressure matrix. This makes implementation in

standard finite element codes less obvious.



Preconditioners for Incompressible Navier-Stokes Solvers 251

3.2. Least Squares Commutator preconditioner

A method based on the same principle as the PCD preconditioner is the Least Squares

Commutator (LSC) preconditioner of Elman et al. [13]. This method is based on the

matrices in (2.10) as well as the simple velocity mass matrix and is therefore more suitable

for standard FEM codes. Unfortunately this is only true for stable elements. The extension

to stabilized elements is far from trivial [23], since it requires the estimation of two tuning

parameters. So we limit ourselves to the stable case only.

The idea is to approximate the matrix operator, Fp, in (3.6), such that the commutator

(3.4) becomes small. This is done by solving a least squares problem. For the j th column

of matrix Fp, the least squares problem has the form:

min‖[Q−1
v FQ−1

v BT ] j −Q−1
v BT Q−1

p [Fp] j‖Qv
, (3.8)

where ‖.‖Qv
is the
p

x
¯

TQvx
¯

norm. The normal equations associated with this problem are:

Q−1
p BQ−1

v BT Q−1
p [Fp] j = [Q

−1
p BQ−1

v FQ−1
v BT ] j ,

which leads to the following definition of Fp:

Fp = Qp(BQ−1
v BT )−1(BQ−1

v FQ−1
v BT ).

Substituting this expression into (3.6) gives an approximation to the Schur complement

matrix:

BF−1BT ≈ (BQ−1
v BT )(BQ−1

v FQ−1
v BT )−1(BQ−1

v BT ). (3.9)

To avoid the dense inverse Q−1
v , the mass matrix is approximated by its diagonal. This

matrix acts as a scaling matrix, which improves the convergence rate of the method.

The algorithm for the LSC preconditioner reads:Algorithm 3.2: LSC pre
onditioner1. Solve S f z2 = r2, where S f = BQ̂−1
v

BT2. update r2 = BQ̂−1
v

FQ̂−1
v

BT z23. Solve S f z2 =−r24. update r1 = r1− BT z25. Solve Fz1 = r1

The above Algorithm 3.2 involves two Poisson-type solves for the pressure subsystem

and one velocity solve. The LSC Preconditioner is build from readily available matrices

and no extra boundary conditions are required.

3.3. Augmented Lagrangian approach (AL)

A complete different approach has been published by Benzi and Olshanskii [14]. This

method is developed for stable elements. Recently Benzi et al. [24] have extended their



252 A. Segal, M. ur Rehman and C. Vuik

method to stabilized elements. Necessary for their method is to augment the velocity

matrix in the original equation by a penalty-like term γBT W−1B with γ relatively small

and W a scaling matrix, usually the diagonal of the pressure mass matrix.

The system of equations (2.10) is replaced by

�

Fγ BT
γ

Bγ Cγ

��

u

p

�

=

�

f

g

�

, (3.10)

with Fγ = F + γBT W−1B, BT
γ = BT + γBT W−1C , Cγ = C − γCW−1C . Note that Equations

(2.10) and (3.10) have the same solution, due to the continuity equation (2.8).

Eq. (3.10) is preconditioned with the matrix:

PAL =

�

Fγ B

0 Ŝ

�

, (3.11)

where the inverse of the Schur complement is approximated by

Ŝ−1 = −(νQ̂−1
p + γW−1). (3.12)

Q̂p denotes the approximate pressure mass matrix, ν is the viscosity. Usually, W and Q̂p

are the same.

A good choice of the parameter γ is essential. A large value reduces the number of

outer iterations, but makes the solution of the inner equations expensive. In the limit for

γ going to infinity, only one outer iteration is necessary and the method reduces to the

penalty function formulation. If γ is too small the number of outer iterations increases. In

the stable case γ = 1 is a practical choice, however, to get an optimal value, γ depends on

the viscosity. Tuning this parameter may be necessary.

Benzi [14] has used multigrid (MG) with a new smoothing technique to solve the

adapted velocity subsystem. In [24] the extension to AMG is discussed.

Although convergence of AL is independent of the Reynolds number and mesh size

it has a number of drawbacks. First of all the matrix Fγ contains cross derivatives and

is therefore twice (2D) or three (3D) times the size of the original matrix in case of Pi-

card iteration and constant viscosity if the reduced form of the Navier-Stokes equations is

used. Since most FEM packages use the non-reduced form, suitable for general boundary

conditions and non-constant viscosity this is not a real problem. However, if Taylor-Hood

elements are used instead of Crouzeix-Raviart elements, the size of Fγ is much larger than

that of F even in the non-reduced case. The solution to this problem is not to build the

matrix, but to perform matrix-vector multiplication in the solver using the submatrices. Of

course this makes the multiplication more expensive.

Another problem is that extension of the method for non-constant viscosity is not sim-

ple at all. Numerical experiments performed by us, have shown that the convergence

speed drastically decreases in case of strong varying viscosity. Besides that, fast conver-

gence can only be achieved in combination with MG. If a Krylov subspace solver is used

for the subsystems, the convergence rate becomes much smaller.



Preconditioners for Incompressible Navier-Stokes Solvers 253

4. Simple-type preconditioners

In this section, we discuss block preconditioners that are based on the SIMPLE method

formulation. SIMPLE (Semi-Implicit Pressure Linked Equation) has been introduced by

Patankar as an iterative method to solve the finite volume discretized incompressible

Navier-Stokes equations, using a staggered grid arrangement of the unknowns [10]. The

staggering assures a stable discretization, hence C = 0. The scheme belongs to the class

of classical iterative methods. Its convergence depends on relaxation parameters for the

velocity and pressure, but is usually very slow. Still the scheme is very popular in the CFD

community and has been used in many commercial packages like for example FLUENT§.

A much faster convergence can be achieved if the SIMPLE method is used to accelerate

a Krylov method. Variants of SIMPLE (SIMPLER, SIMPLEC) are also used as preconditioner

to solve the incompressible Navier-Stokes problem.

In this section we shall discuss both SIMPLE and SIMPLER as preconditioners and we

present a new variant, MSIMPLER (Modified SIMPLER), that improves the convergence

considerably.

4.1. SIMPLE preconditioner

Originally SIMPLE has been developed for finite volume and finite difference discretiza-

tions [10,25]. The algorithm is based on the following steps. First the pressure is assumed

to be known from the prior iteration. Then the velocity is solved from the momentum

equations. The newly obtained velocities do not satisfy the continuity equation since the

pressure is only a guess. In the next substeps the velocities and pressures are corrected in

order to satisfy the discrete continuity equation. The Patankar formulation for FVM can be

written in the form of a distributive iterative method (block matrices) see Wesseling [25].

In this section we apply SIMPLE-type preconditioners for the (Navier-) Stokes equations

discretized by the finite element method.

Combination of the matrices Lb and Db in Eq. (3.1) gives a new matrix, Lbt , defined

by

Lbt =LbDb =

�

F 0

B S

�

. (4.1)

Our preconditioner will be based on the splitting A = Lbt Ub. An approximation of this

matrix will be used as preconditioner.

If we solve Lbtz = r; z = [u; p]; r = [ru; rp], with this splitting we get Algorithm 4.1.Algorithm 4.1: Basi
 SIMPLE algorithm1. Solve Fu∗ = ru.2. Solve Sδp = rp − Bu∗.3. update u = u∗ − F−1BTδp.4. update p = δp.

§http://www.fluent.
om/



254 A. Segal, M. ur Rehman and C. Vuik

To get the actual algorithm, F in the update step is approximated by the matrix D,

which is the diagonal of F and the matrix S by Ŝ = C − BD−1BT . Vuik et al. [26], used

SIMPLE and its variants as a preconditioner to solve the incompressible Navier-Stokes prob-

lem. One iteration of the SIMPLE algorithm is used as a preconditioner. The preconditioner

consists of one velocity solve and one pressure solve. Since the systems of equations in Al-

gorithm 4.1 are solved to a certain accuracy, the preconditioner can not be considered

constant in subsequent iterations. For that reason we use GCR, which allows variable

preconditioners, as outer iteration.

It can be proven that the SIMPLE preconditioner improves the overall spectrum of the

preconditioned system. Some of the eigenvalues are clustered around 1. The other ones

depend on the approximation of the Schur complement matrix. More details on eigenvalue

analysis are given in [27].

4.2. SIMPLER

A variant of SIMPLE, known as SIMPLER, is supposed to give Reynolds independent

convergence. Algorithm 4.1 is extended by a first estimate of the pressure p∗ as solution of

the subsystem:

Ŝp∗ = rp − BD−1ru. (4.2)

The right-hand side in the first step in Algorithm 4.1 is extended with −BT p∗.

Consistency requires that the right-hand side in the next step is updated with −C p∗.

The complete SIMPLER algorithm is given in Algorithm 4.2.Algorithm 4.2: SIMPLER algorithm1. Solve Ŝp∗ = rp − BD−1ru.2. Solve Fu∗ = ru− BT p∗.3. Solve Ŝδp = rp − Bu∗ − Cp∗.4. update u = u∗ − F−1BTδp.5. update p = p∗ +δp.

This SIMPLER algorithm proposed by Patankar consists of two pressure solves and one

velocity solve. Unfortunately if SIMPLER preconditioned GCR is used for finite element

discretizations, the convergence may be poor or even divergence may occur, especially in

case of low accuracy for the inner systems and in case of fine grids.

4.3. MSIMPLER

An improvement of the SIMPLER method is inspired by work of Elman et al. [13,18].

Elman et al. discussed relations between SIMPLE and commutator preconditioners. The

more general form of (3.9) is given by:

(BF−1BT )−1 ≈ Fp(BM−1
1 BT )−1, (4.3)



Preconditioners for Incompressible Navier-Stokes Solvers 255

with

Fp = (BM−1
2 BT )−1(BM−1

2 F M−1
1 BT ),

where M1 and M2 are scaling matrices. Consider a new block factorization preconditioner

in which the Schur complement is based on a commutator approximation but built on

SIMPLE’s approximate block factorization written as:

P =LbtUb

�

I 0

0 F−1
p

�

. (4.4)

When Ŝ = C − BD−1BT , Mu = D and Fp is the identity matrix, then the preconditioner

formulation (4.4) corresponds to SIMPLE. The formulation given in (4.4) is equivalent

to the SIMPLE algorithm if the subsystem for the pressure part in step 2 in the SIMPLE

algorithm is solved with the approximation given in (4.3)

Ŝδp = rp − Bu∗, where Ŝ = C − (BM−1
1 BT )F−1

p .

When F D−1 is close to identity, Fp will also be close to identity. This is true in a time

dependent problem with small time steps where the diagonal of F has larger entries than

the off-diagonal entries [13].

Here we utilize the observation of Elman regarding the time dependent problem. We

know that in time dependent problems,

Ft =
1

∆t
Qu+ F, (4.5)

where Ft represents the velocity matrix for the time dependent problem and∆t represents

the time step. For small time step Ft ≈
1

∆t
Qu. This kind of approximation has been used in

fractional step methods for solving the unsteady Navier-Stokes problem [28–30]. We use

this idea in solving the steady Navier-Stokes problem. Therefore, we choose M1 = M2 = Q̂v

in (4.3) resulting in:

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v FQ̂−1
v BT ).

If we assume that the factor FQ̂−1
v in Fp is close to identity, then

Fp = (BQ̂−1
v BT )−1(BQ̂−1

v BT )≈ I ,

and the approximation (4.3) becomes

BF−1BT ≈ (BQ̂−1
v BT ). (4.6)

Based on this result we replace D−1 in the SIMPLER algorithm by Q̂−1
v . We refer to this

method as MSIMPLER (Modified SIMPLER). MSIMPLER is described by Algorithm 4.3.

It is clear that the cost of the MSIMPLER preconditioner is equal to the cost of the

SIMPLER preconditioner. However, in solving the Navier-Stokes problem, at each non-

linear iteration, the Schur complement approximation in MSIMPLER does not need to

be build again because the operators used in the Schur complement approximation are

independent of any change taken place at each non-linear iteration. This in contrast to the

SIMPLER preconditioner where we have to rebuild the Schur complement approximation

in each non-linear step.



256 A. Segal, M. ur Rehman and C. VuikAlgorithm 4.3: MSIMPLER pre
onditioner1. Solve Ŝp∗ = rp − BQ̂−1
v

ru.2. Solve Fu∗ = ru − BT p∗.3. Solve Ŝδp = rp − Bu∗.4. update u = u∗ − Q̂−1
v

BTδp.5. update p = p∗ + δp.

5. A saddle point ILU type preconditioner

A disadvantage of the block preconditioners from the prior sections is that straightfor-

ward application of standard finite element codes is impossible. Both the standard matrix

builder and solver must be adapted, since splitting of velocity and pressure unknowns is

required. It would be attractive, if standard classical iterative solution schemes, like pre-

conditioned Krylov solvers, could be applied, without any changes. However, in the case

of non-stabilized elements, the zero pressure block in the continuity equation, prevents

straightforward application of LU and ILU factorizations. If the common ordering of un-

knowns is used, i.e. placing first all unknowns of node 1, then those of node 2 and so on,

one might get a zero pivot, especially if velocities at some boundaries are prescribed and

therefore both factorizations may fail. Pivoting, [31], on the other hand, will result in a

large increase of memory usage and, as a consequence, computation time. Also estimat-

ing the amount of memory is hard, which from an implementation point of view is, not

very practical. To avoid this problem, it is better to use a suitable a priori reordering of

unknowns. As pointed out by Wille and others [7–9], pivoting is not necessary, when the

unknowns are ordered in the sequence, so that all velocity unknowns come first and then

all the pressure unknowns; like in the block preconditioners. This is due to the fact that

during (incomplete) factorization the zeros at the main diagonal will become non-zero.

A better approach is to combine a node renumbering scheme with a special ordering

of the unknowns. In Subsection 5.1, we treat a method that results in an optimal band

width or profile (envelope) of the coefficient matrix, in case of a direct method. The

combination of this reordering technique, with ILU preconditioned Krylov solvers, usually

results in better solver performance. The extra advantage is of course the simplicity of the

implementation.

5.1. Ordering for direct solvers

If we consider the complete matrix, using the same ordering as in case of the block-

preconditioners, i.e. placing first all velocity unknowns and then all pressure unknowns,

we end up with a very large profile of the matrix. This is even true if we use an optimal

node renumbering. The main advantage of this ordering is that no pivoting is necessary in

case of a direct method. In the remaining part of this paper we shall refer to this reordering

as p-last. Fig. 2 shows an example of the non-zero structure of the matrix for the p-last

ordering, applied to a 4× 4 rectangular grid of Q2−Q1 elements, where a lexicographic

numbering of nodes is used.



Preconditioners for Incompressible Navier-Stokes Solvers 257

Figure 1: Levels de�ned for 4x4 Q2−Q1 grid.
We get a much smaller profile, if we order the unknowns in the sequence of the (renum-

bered) nodal points. However, this may lead to zero pivots, especially in the case of Dirich-

let boundary conditions for the velocity. So this ordering is not applicable if we try to avoid

pivoting during elimination. Our goal is to develop a reordering, that avoids zero pivots,

but has a profile that is comparable to the one corresponding to node-wise ordering. To

that end we need to define the concept of levels, which originates from the classical Cuthill

McKee renumbering scheme.

Let us first define the notion of levels for Cuthill McKee. Suppose we have created

levels 1 to i-1. Then level i is defined as the set of nodes that are connected directly to

level i−1, and are not in one of the prior levels. Nodes are connected if they belong to the

same element.

The first level may be defined as a point, or even a line in R2 or a surface in R3. This

definition also applies in case of structured grids. For example in the 4× 4 structured grid

of Fig. 1, with Q2−Q1 elements, the first level might consist of the nodes 1 to 9. Level 2

consists of the nodes 10 to 29 and so on. It is clear that nodes in level i are only connected

to nodes in level i − 1 and level i+1.

In case of a different renumbering scheme, like Sloan [32] or the one proposed by

Wille et al. [8], we define levels in the following way:

Suppose level 1 to i − 1 have been constructed. Let node, k, be the node with highest

node number, that is directly connected to nodes in level i − 1. Then level, i, consist of

node k, and all nodes with node number less than k but not belonging to one of the levels

1 to i − 1. The first level is defined as node, 1.

Once the levels have been defined, we reorder the unknowns in the following way.

First we take all the velocities of level 1, then all pressures of level 1. Next we do the same

for level 2, and repeat this process for all nodes. So instead of a global block ordering we

apply a block ordering per level. Such an approach has two advantages.

First, the profile is hardly enlarged, compared to the optimal ordering, since the local

bandwidth is defined by the largest distance in node numbers.



258 A. Segal, M. ur Rehman and C. Vuik

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile  = 52195, Bandwidth = 570
p−last ordering with lexicographic numbering

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile  =31222,  Bandwidth = 212              
p−last per level ordering with Sloan renumberingFigure 2: E�e
t of Sloan renumbering of grid points and p-last per level reordering of unknowns on thepro�le and bandwidth of the matrix.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Profile  =47468,  Bandwidth =160             
p−last per level ordering with Cuthill McKee renumberingFigure 3: E�e
t of Cuthill M
Kee renumbering of grid points and p-last per level reordering of unknownson the pro�le and bandwidth of the matrix.

Second, due to the local block reordering, zero pivots become non-zero, during fac-

torization, and no a postiori pivoting is required. In the remainder we shall refer to this

ordering technique as p-last per level.

One has to be careful at the start of this process. If, for example, the velocities in

node 1, are prescribed, we start with a pressure unknown that gives rise to a zero pivot.

Therefore, we always combine levels 1 and 2, into a new level. If the number of free

velocity unknowns in this new level, is less than the number of pressure unknowns, we

also add the next level to level 1, and if necessary this process is repeated. In practice



Preconditioners for Incompressible Navier-Stokes Solvers 259

combinations of 2 or 3 levels is sufficient. Note that the starting level has always a small

contribution to the global profile. Figs. 2 and 3, show the effect of the p-last per level

renumbering, combined with Sloan and Cuthill McKee renumbering, respectively. The grid

used, consists of 8× 8 Q2−Q1 elements. The gain in memory is clear, even for this small

example.

So our reordering technique p-last per level, in combination with a suitable node

renumbering strategy, produces a nearly optimal profile and avoids the need for pivoting

in case of direct solvers. It has been applied to many practical problems, without ever pro-

ducing small pivots. Since optimal reordering of unknowns for direct methods, are usually

also suitable for ILU preconditioners, we consider this method in the next subsection.

5.2. Renumbering for ILU preconditioning

The block preconditioners of the previous sections, all require adaptation of standard

finite element software packages. ILU-preconditioned Krylov subspace solvers, on the other

hand, can be applied without any change at all. Since an optimal ordering of unknowns

for a direct solver, usually improves the behavior of an ILU preconditioner, in Section 8 we

investigate p-last per level ordering, as well as p-last ordering, in combination with ILU.

We define the set, S, of fill-in positions as the set of unknowns, that are directly con-

nected. This implies that, zeros in the pressure block, may also be part of the set S, provided

that there is a connectivity with velocity unknowns. The ILU decomposition A ≈ LD−1U

is defined by the following rules:

li, j = 0 for (i, j) /∈ S ,

ui, j = 0 for (i, j) /∈ S ,

(LD−1U)i, j = ai, j for (i, j) ∈ S ,

Experiments in Section 8, show that in a large number of practical cases, this method per-

forms very well and is competitive, with the block preconditioners. However, in some cases

the Krylov method converges slowly, or even diverges, for example in case of stretched

grids, using elements with a large aspect ratio. In that case, we apply extra fill-in referred

to as ILUF. Extra fill-in is defined by adding all neighbor points of the standard ILU node

structure to the connectivity set, provided these nodes do not affect the envelope of the

original matrix. In many cases, extra fill-in solves the convergence problem, but at the cost

of extra memory and computing time per iteration.

6. Special methods for the Stokes equations

If one is only interested in solving the Stokes equations, one can use specially devel-

oped methods that perform only well in case of absence of the convective terms. Such

problems can for example be found in the field of geodynamics, but also in case of extru-

sion problems, like extrusion of aluminum. Usually the viscosity in these problems is far

from being constant. Since the Stokes matrix is symmetric indefinite an option is to use



260 A. Segal, M. ur Rehman and C. Vuik

MINRES as iteration method. However, MINRES requires an SPD preconditioner and this

limits our choice. The combination of non-symmetric preconditioners and GCR leads to a

faster convergence. In this section we shall treat two methods that are very efficient for

these kind of problems. We limit ourselves to the stable case, since at this moment no good

preconditioner for stabilized elements is available.

6.1. PMM preconditioner

If we use exact arithmetic, GMRES using a version of the DbUb decomposition (3.2) as

preconditioner, converges in two iterations. In Section 3 we have seen some approxima-

tions of this preconditioner that can be applied for the Navier-Stokes equations. In case of

the Stokes equations a very simple approximation of the Schur complement matrix S can

be constructed. In case of stable elements and constant viscosity, S is defined by −BF−1BT ,

which can be considered as an approximation of −∇· 1
ν
∆−1∇. Here ∆ must be considered

component-wise. Suppose one could interchange the operators this could be written as

− 1

ν
∇ ·∇∆−1. Since −∇ ·∇ is equal to ∆ and since we use the finite element method, this

suggests that minus the pressure mass matrix, Mp, with elements:

mi j =

∫

Ω

1

ν
ψiψ j dΩ, (6.1)

with ψi basis functions corresponding to the pressure, can be used as preconditioner for

the Schur matrix. Note that putting 1

ν
into the integral makes this definition applicable to

non-constant viscosities.

The complete PMM preconditioner [33,34] is defined by

Pt =

�

F BT

0 −Mp

�

. (6.2)

Solving Ptz = r requires the steps in Algorithm 6.1.Algorithm 6.1: PMM algorithm1. Solve Mpz2 = r2.2. update r1 = r1 − BT z2.3. Solve Fz1 = r1.

Each of the steps can be performed with a lower accuracy than the accuracy required

for the outer GCR iterations.

We applied the PMM preconditioner successfully to various Stokes problems with con-

stant viscosity, but also with variable viscosity with large contrasts in the domain. In case

of the Stokes problem it appears to be more efficient than the general methods of Section

3 to 5. One of the reasons is that solving the pressure step is very cheap compared to the

methods treated before. However, one should be careful with the termination criterion as

will be demonstrated in Section 7.



Preconditioners for Incompressible Navier-Stokes Solvers 261

An alternative method to precondition the Stokes equations is the so-called Schur

method, which is considered in the next section.

6.2. The Schur method

The Schur method is based on the Lbt Ub factorization ((3.1) and (4.1)). The Schur-

complement matrix, S, present in the factorization is treated implicitly. In order to apply

pressure-correction type methods, we split the coefficient matrix as follows:

�

F BT

B 0

��

u

p

�

=

�

F 0

B S

��

u∗

δp

�

, (6.3)

where
�

u∗

δp

�

=

�

I F−1BT

0 I

��

u

p

�

. (6.4)

Then the systems of equations can be solved in the steps in Algorithm 6.2.Algorithm 6.2: The S
hur methodInitialize u(0), p(0) and maxi ter (maximum iterations)Compute: ru = f − Fu(0) − BT p(0)

rp = g − Bu(0)For k = 0 to maxi ter1. Solve Fu f = ru2. Solve Spδ = rp − Bu f3. Update uδ = u f − ul , where ul is obtained by solving Ful = BT pδ4. Update u(k+1) = u(k) + uδ5. Update p(k+1) = p(k) + pδ6. Update ru = f − Fu(k+1) − BT p(k+1)7. Update rp = g − Bu(k+1)8. If 
onverged ExitEnd For
As already mentioned, the Stokes problem is symmetric and indefinite. However, the

subsystems corresponding to the velocity (vector Poisson) and pressure used in the solves

in Steps 1, 2 and 3 are symmetric and definite. F−1 in Steps 1 to 3 is computed approx-

imately by solving the velocity subsystem with an inexact solver. The best option is to

use MG preconditioned CG or some multigrid technique since both of these methods are

known to give optimal convergence for Poisson-type problems.

The pressure subsystem in Step 2 can in principle, be solved efficiently by CG. However,

we do not construct−BF−1BT explicitly, but approximately solve (−BF−1BT )pδ = rp−Bu f



262 A. Segal, M. ur Rehman and C. Vuik

within each step of CG. Since F−1 is computed inexactly, CG can only be applied if the

number of iterations used to do this is kept constant in each step. This is due to the fact

that CG requires a constant matrix and preconditioner. This problem can be overcome

by either using a stand-alone solver, such as multigrid, or a flexible Krylov method (GCR

in our case). The efficiency of the Schur method requires efficient treatment of Step 2.

Because the Schur-complement matrix is not constructed explicitly, we need a special type

of preconditioner. Like in PMM, we use the pressure mass matrix as preconditioner for the

Schur subsystem. If we use the same accuracy to solve the system with PMM and to solve

Step 2 of the Schur method, the number of pressure mass matrix preconditioned GCR

iterations in both methods are almost the same. These iterations govern the efficiency

of both techniques. This observation also motivates the use of GCR instead of flexible

CG [35].

Based on the Schur method, Algorithm 6.2, we propose two schemes:

1. Schur method as direct method: By requiring the accuracy of the subsystem solves

to be the same or higher than the outer accuracy, the Schur method can be used

as a direct solver. To solve the Schur pressure system Spδ = rp − Bu f , we use CG

with the pressure mass matrix, Mp, as a preconditioner. The system, Spδ = rp −
Bu f , is solved with the help of GCR in which preconditioned matrix-vector products

within (BF−1BT )pδ are obtained by computing preconditioned residual S(k+1) =

Bum, where um is obtained by solving a subsystem Fum = BT Mp
−1r(k) and r(k) is the

residual computed in the previous GCR iteration.

2. Schur as an iterative method: When the inner systems are solved with a lower

accuracy than desired of the final solution, outer iterations are required. Again, the

pressure mass matrix is used as preconditioner for the pressure subsystem.

From the above discussion, it is clear that three subsystems are solved for the velocity

unknowns u f , um, and ul and one subsystem is solved for the pressure unknown pδ in each

iteration of the Schur method. The most expensive part of the algorithm is the computation

of um since the number of times Fum = r must be solved is equal to the total number of

GCR iterations that are required to solve the pressure subsystem.

One of the advantages that can be seen from the above algorithm is that most of the

computations are done at subsystem level. The system level computations can be reduced

by a proper choice of the inner accuracy. For example, if subsystems are solved as accu-

rately as the outer tolerance requires, only one outer iteration is required. However, more

outer iterations are typically required.

7. Discussion of the convergence criteria

It has been observed that for the same preconditioner, different implementations (Split,

left or right preconditioner) leads to the same eigenvalue spectrum of the preconditioned

system [36, Chapter 13, page 175]. Therefore, the same number of iterations are expected

for a desired accuracy.



Preconditioners for Incompressible Navier-Stokes Solvers 263

In our software we use GCR in combination with a right preconditioner. This suggests

that the stopping criterion is independent of the preconditioner. However, if we solve

the Stokes problem in combination with the PMM preconditioner, we can see that for

increasing grid size the actual error becomes much larger than the required accuracy (see

Table 1). Therefore we study the stopping criterion in more detail.

The convergence criterion we use is

�

�

�

�b−A xk

�

�

�

�

2
< ǫ ||b||2 , (7.1)

From this relation it can be proved that

�

�

�

�x − xk

�

�

�

�

2

||x ||2
≤ K2(A )

�

�

�

�rk

�

�

�

�

2

||b||2
≤ K2(A )ǫ.

This implies that the relative error depends on the condition number of the matrix. The

right preconditioner has the advantage that it only effects the operator and not the right-

hand side. This implies that stopping criteria for various preconditioners are the same.

Remark 7.1. Since in right preconditioning we solve A P−1 y = b with x = P−1 y one

must be careful with stopping criteria that are based on the error
�

�

�

�y − yk

�

�

�

�

2
because this

error may be much smaller than the error norm
�

�

�

�x − xk

�

�

�

�

2
(equal to
�

�

�

�P−1(y − yk)
�

�

�

�

2
) [36,

Chapter 13, page 175].

In case of left preconditioning, the convergence criterion depends also on the precon-

ditioner
�

�

�

�P−1(b−A xk)
�

�

�

�

2
< ǫ
�

�

�

�P−1 b
�

�

�

�

2
.

Now the condition number is changed to K2(P
−1A ) which is expected to be much smaller

than K2(A ) and the convergence criterion may be quite different then the criterion based

on the unpreconditioned residual.

In case of a variable preconditioner one should use a right preconditioner because its

independence of the stopping criterion. In order to avoid the dependence of the termina-

tion criterion on the condition number ofA we apply a scaling of the complete system.

The idea is to minimize the condition number of the matrix to K2(S
−1
m A ), where Sm

is a scaling matrix. Diagonal scaling is considered to be optimal if the original system is

SPD [37] but also for the symmetric indefinite system we use this type of scaling.

Tables 1 to 3 compare the error in the pressure part in the Stokes problem precondi-

tioned with PMM and LSC with different termination criteria. Note that the pressure part

is the most sensitive part in (Navier-)Stokes, the velocity part usually behaves very well. It

is clear that, if we base the termination on the norm of the residual, the real error increases

for increasing grid size. On the other hand if we use the norm of the residual multiplied by

the inverse of the preconditioner, we see that the real error is almost constant. Of course

the number of iterations increases in this case. Unfortunately the computation of P−1rk is

very costly and therefore not practical. The alternative, scaling the complete system results

in a termination based on
�

�

�

�S−1
m rk

�

�

�

�. This gives an increase in iterations, but clearly a much



264 A. Segal, M. ur Rehman and C. VuikTable 1: Ba
kward fa
ing step Stokes problem (PMM pre
onditioner).
Grid
�

�

�

�rk

�

�

�

�

�

�

�

�P−1rk

�

�

�

�

�

�

�

�S−1
m

rk

�

�

�

�

Iter. Error-p Iter. Error-p Iter. Error-p

8× 24 18 2e-5 22 2e-7 20 2e-6

16× 48 17 3e-4 24 8e-7 20 4e-6

32× 96 16 1e-3 23 5e-7 20 1e-5Table 2: Driven 
avity Stokes problem (PMM pre
onditioner).
Grid
�

�

�

�rk

�

�

�

�

�

�

�

�P−1rk

�

�

�

�

�

�

�

�S−1
m

rk

�

�

�

�

Iter. Error-p Iter. Error-p Iter. Error-p

16× 16 9 9e-5 15 9e-8 13 9e-7

32× 32 9 3e-4 16 7e-8 13 1e-6

64× 64 9 2e-3 16 9e-8 13 2e-6

128× 128 8 4e-3 16 1e-7 12 8e-6Table 3: Driven 
avity Stokes problem (LSC pre
onditioner).
Grid
�

�

�

�rk

�

�

�

�

�

�

�

�P−1rk

�

�

�

�

�

�

�

�S−1
m1 rk

�

�

�

�

Iter. Error-p Iter. Error-p Iter. Error-p

64× 64 10 1e-4 19 1e-8 15 3e-7

128× 128 11 4e-4 24 1e-8 19 8e-7

more reliable result. The real error in all these cases is computed by solving the original

system with a direct solver.

Because scaling of the system does not effect the eigenvalue spectrum of the precondi-

tioned matrix, but only changes the convergence criterion, it is much cheaper to scale only

the residual by S−1
m , before checking the accuracy.

Various choices are possible for the scaling matrices. In this section, we consider two

variants. Vuik et al. [26] and May and Moresi [38] use the following scaling for the

complete system with different preconditioning strategies

Sm =





p

diag(BD−1BT ) 0

0
p

diag(BD−1BT )



 . (7.2)

D is the diagonal of the velocity matrix. Sm is only well-defined when Fii > 0 and

BD−1BT
ii > 0. If we use this scaling, our system, A x = b becomes S−1

m A S−1
m Sm x =

S−1
m b, the most important change is the termination criterion for the iterative method.

Convergence criteria are based on the residual in a scaled L2 norm.

Instead of scaling the complete system, we scale only the stopping criteria with the

scaling matrix:

Sm1 =

�

diag(F) 0

0 diag(BD−1BT )

�

. (7.3)

Another choice of scaling the stopping criteria can be that diag(BD−1BT ) is replaced



Preconditioners for Incompressible Navier-Stokes Solvers 265

by diag(Qp):

Sm2 =

�

diag(F) 0

0 diag(Qp)

�

. (7.4)

For the pressure part, the pressure mass matrix is a good scaling operator because in

case of a lumped pressure mass matrix, this is a diagonal matrix.

Table 4 shows the results of this approach for two different choices of the scaling ma-

trices, Sm1 andSm2. Both scaling matrices are comparable, but Sm1 gives a slightly better

error estimate than Sm2. It is clear that this cheap approach is a very good alternative

for complete scaling. For more information concerning stopping criteria we refer to [39]

and [40]. Table 4: Driven 
avity Stokes problem solved using s
aled stopping 
riteria.
Grid PMM LSC
�

�

�

�S−1
m1 rk

�

�

�

�

�

�

�

�S−1
m2 rk

�

�

�

�

�

�

�

�S−1
m1 rk

�

�

�

�

�

�

�

�S−1
m2 rk

�

�

�

�

Iter. Error-p Iter. Error-p Iter. Error-p Iter. Error-p

16× 16 16 1e-8 15 9e-8 11 2e-8 11 2e-8

32× 32 17 2e-8 16 7e-8 14 2e-8 13 2e-7

64× 64 17 4e-8 16 9e-8 19 1e-8 17 7e-8

128× 128 18 2e-8 16 1e-7 24 1e-8 22 7e-8

8. Comparison of the various preconditioners

In this section we give an overview of some of the numerical experiments we have

performed to test the various preconditioners. In case one only solves the Stokes equations

the special methods of Section 6 perform better than the more general methods of Sections

3 to 5.

To test the performance of the special methods for the Stokes equations we use the

SINKER problem [38]. It represents a benchmark problem for geodynamic models. Inside

a square region we have another square with a different (but constant) viscosity, resulting

in a sharp viscosity contrast. Besides that there is also a jump in the density between

both regions. The configuration is shown in [38] and in Fig. 4. Boundary conditions are

no normal flow and no shear stress (at all boundaries). For this boundary condition, the

pressure can be determined only up to an arbitrary additive constant.

For the more general Navier-Stokes problem we have performed experiments with the

2d lid driven cavity (Fig. 5) and with the 2d (Fig. 6) and 3d backward facing step.

In this paper we only compare the best performing of the methods we treated, i.e.

MSIMPLER, LSC and SILU. Experiments have been done in Matlab using the IFISS package¶

and in Fortran with the SEPRAN package‖.

In our experiments SILU is combined with Bi-CGSTAB. Outer iterations in the block

preconditioners are always done with GCR.

¶http://www.maths.man
hester.a
.uk
‖http://ta.twi.tudelft.nl/sepran/sepran.html



266 A. Segal, M. ur Rehman and C. Vuik

Figure 4: Domain for the SINKER model, LVR 
orresponds to ν1 and HVR to ν2.

Figure 5: De�nition of square 
avity problem and 
orresponding streamlines.
Figure 6: De�nition of ba
kward fa
ing step and 
orresponding streamlines.

8.1. Comparison of the Stokes solvers

The SINKER problem is defined in Fig. 4. Here, we consider a forcing term f =

(0, − ρg), where g = 9.8m/s2. Since LSC either diverges or converges very slowly for

the high viscosity contrasts considered here, we do not report any results for this method.

However, a variant of LSC, LSCD [34], where the velocity mass matrix is replaced by the

diagonal of the velocity matrix, is able to solve problems with large contrasts in viscosity.



Preconditioners for Incompressible Navier-Stokes Solvers 267

Before applying the iterative solvers, the matrices have been scaled with matrix Sm (7.2)

in order to get a better condition. The velocity solution for all preconditioners is accu-

rate. Therefore, we only remark on the accuracy of the pressure solution. This is done by

comparing with the "exact solution", computed by a direct method.

Table 5 shows the number of iterations and the norm of the error in pressure. In the

first experiments, ν1 is kept fixed at one and ν2 is increased; thereafter, ν2 is kept equal

to one and ν1 is increased. We see that the number of iterations for PMM and Schur is

almost the same for both the 30× 30 and 60× 60 grids, which suggests h-independent

convergence. LSCD shows a clear increase with the increase of grid points. For constant

ν2, the difference in accuracy between all methods is small.Table 5: Iterative solution of the Stokes problem, a

ura
y = 10−6.
ν PMM LSCD Schur

iter. ‖p− pPM M‖2 iter. ‖p− pLSCD
‖2 iter. (inner) ‖p− pSchur‖2

30× 30

ν1 = 1, ν2 = 106 12 9× 10−4 26 7× 10−6 2(18) 2× 10−8

ν1 = 1, ν2 = 103 12 2× 10−5 26 3× 10−6 2(20) 2× 10−10

ν1 = 1, ν2 = 101 11 5× 10−6 24 1× 10−6 2(16) 2× 10−10

ν1 = 1, ν2 = 1 11 4× 10−7 25 2× 10−6 2(5) 5× 10−11

ν1 = 101, ν2 = 1 15 1× 10−6 27 2× 10−6 1(14) 2× 10−6

ν1 = 103, ν2 = 1 18 4× 10−6 26 3× 10−6 1(18) 2× 10−6

ν1 = 106, ν2 = 1 15 4× 10−4 23 1× 10−4 1(16) 2× 10−5

60× 60

ν1 = 1, ν2 = 106 13 8× 10−3 40 6× 10−5 2(19) 5× 10−8

ν1 = 1, ν2 = 103 13 3× 10−5 40 5× 10−6 2(20) 3× 10−9

ν1 = 1, ν2 = 101 13 1× 10−6 41 3× 10−6 2(18) 4× 10−10

ν1 = 1, ν2 = 1 3 6× 10−6 36 3× 10−6 2(5) 9× 10−10

ν1 = 101, ν2 = 1 16 2× 10−6 41 4× 10−6 1(14) 4× 10−6

ν1 = 103, ν2 = 1 20 1× 10−5 38 7× 10−6 1(20) 5× 10−6

ν1 = 106, ν2 = 1 17 4× 10−4 35 1× 10−4 1(18) 3× 10−5

However, in the problem where ν1 is small, the accuracy obtained with PMM is less

than the other two iterative methods, even though all subsystems are solved with high

accuracy (10−6 or 10−7). The Schur method gives much more accurate results than the

other two preconditioners, because the first iteration of the Schur method gives an accurate

inner solve, while the second iteration makes the solution more accurate than the desired

tolerance. From the table, we see that, with respect to accuracy and efficiency, the Schur

method seems a better option than the other two. The reason is that PMM requires more

iterations than Schur to get the same accuracy, while the costs per iteration are comparable.

Similar results have been observed for a 90× 90 grid.

8.2. Comparison in 2D

First of all we investigate the difference between p-last and p-last per level ordering.

Table 6 gives the time and number of iterations needed for solving the Stokes problem on



268 A. Segal, M. ur Rehman and C. VuikTable 6: Solution of the Stokes problem with the Q2 −Q1 dis
retization in the square 
avity with an
accurac y of 10−6.

Solver. Renumber 16× 16 32× 32 64× 64

Iter. Time(s) Iter. Time(s) Iter. Time(s)

Direct p-last - 0.61 - 20.34 - 1378

p-last per level - 0.13 - 2.28 - 37

GMRES(20) p-last 95 0.16 354 1.72 1800 44.0

p-last per level 50 0.12 207 1.14 792 20.0

Bi-CGSTAB p-last 36 0.11 90 0.92 255 11.98

p-last per level 25 0.09 59 0.66 135 6.74Table 7: Solution of the Stokes problem with the stabilized P1 − P1 dis
retization in the square 
avitywith an accurac y of 10−6.
number of nodes SILU ILU

Iter. Time(s) Iter. Time(s)

17× 17 48 0.008 22 0.004

33× 33 84 0.052 41 0.016

65× 65 200 0.620 91 0.160

129× 129 653 9.060 245 1.860

257× 257 1891 118.359 1468 48.463

a square cavity with Q2-Q1 elements. Results are compared for a direct solver, and SILU

preconditioning in combination with GMRES and Bi-CGSTAB. This shows that renumbering

per level is in all cases more efficient than the p-last ordering. Even for the relatively small

16 × 16 elements grid, SILU in combination with Bi-CGSTAB performs better than the

direct solver. In case of the P1 − P1 mini element, which may be considered as a stabilized

element, no zeros appear on the main diagonal of the pressure block. As a consequence

there is no need to reorder the unknowns. Table 7 shows that in this case ILU (i.e. without

reordering) is a better option than SILU. In both cases the number of iterations increases

considerably with the increase of grid size.

In Fig. 7, preconditioners for Q2 − Q1 elements are compared based on the number

of outer iterations, CPU time and inner iterations. In terms of all these parameters, we

can see that the MSIMPLER performance is better than the rest of the preconditioners. In

terms of CPU time, SILU performance is comparable with MSIMPLER and better than that

of the other preconditioners. We can see that the number of iterations of SILU and SIMPLE

increase more for increasing grid size than for the other preconditioners. SIMPLE appears

to be robust but expensive, and therefore we do not report further experiments in 2D.

Table 8 compares LSC and MSIMPLER in the case that the pressure and velocity sube-

quations are solved by one MG cycle. Although we see that for coarse grids the convergence

depends on the Reynolds number, this is no longer the case for the finest grid. Further-

more it is clear that the number of iterations decreases for fixed Reynolds number for finer

grids. Presumably this is due to the decrease in cell Reynolds number (element size/ν).

In all cases MSIMPLER requires less iterations than LSC but the difference becomes small

for increasing mesh size. The relative good result of the last number in the MSIMPLER



Preconditioners for Incompressible Navier-Stokes Solvers 269

16x48 32x96 64x192 128x384
10

1

10
2

10
3

Grid size

G
C

R
 i
te

ra
ti
o

n
s

(a)

 

 

16x48  32x96  64x192  128x384
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Grid size

C
P

U
 t

im
e

 (
s
)

(b)

 

 

16x48  32x96  64x192  128x384

100

10^5

Grid size

V
e

lo
c
it
y
 i
te

ra
ti
o

n
s

(c)

 

 

16x48  32x96  64x192  128x384
10

2

10
3

10
4

10
5

Grid size

P
re

s
s
u

re
 i
te

ra
ti
o

n
s

(d)

 

 

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER

SIMPLE
LSC
MSIMPLER

Figure 7: 2D Ba
kward fa
ing step (Q2-Q1): The Stokes problem is solved with a

ura
y 10−6. PCGis used as inner solver in the blo
k pre
onditioners (SEPRAN).Table 8: Ba
kward fa
ing step Navier-Stokes problem with pre
onditioned Bi-CGSTAB with a

ura
y
10−6. MG solver is used to solve subsystems (IFISS).

Grid Re=100 Re=200 Re=400

LSC MSIMPLER LSC MSIMPLER LSC MSIMPLER

iter. (ts)

16× 48 17(8) 9(4.5) 27(13) 15(7) 73(39) 29(16)

32× 96 16(17) 11(13.7) 15(22) 10(17) 24(28.5) 15(21)

64× 192 24(119) 20(99) 23(118) 15(84) 22(112) 18(102)

column must be because of the better cell Reynolds number.

Table 9 shows the convergence of MSIMPLER, LSC and SILU in case the subsystems in

the block preconditioners are solved by ILU preconditioned Bi-CGSTAB. The accuracy for

the inner solves is 10−2, which is sufficient to reach the final accuracy of the Navier-Stokes

problem without increasing the number of Picard iterations. In this table we report the sum



270 A. Segal, M. ur Rehman and C. VuikTable 9: Ba
kward fa
ing step: Pre
onditioned GCR is used to solve the Navier-Stokes problem witha

ura
y 10−2, using Bi-CGSTAB as inner solver, the number of iterations are the a

umulated iterations
onsumed by the outer and inner solvers (SEPRAN).
Grid LSC MSIMPLER SILU(Bi-CGSTAB)

iter. (ts) iter. (ts)

Re=100 (11 Picard iterations)

16× 48 114(1.7) 73(1) 246(0.8)

32× 96 193(22) 106(10.5) 731(8.7)

64× 192 328(545) 182(162) 2071(95)

128× 384 695(8863) 296(2806) 6352(1155)

Re=200 (17 Picard iterations)

16× 48 179(2.3) 137(1.7) 436(1.3)

32× 96 302(31) 161(14) 1100(13)

64× 192 598(983) 232(191) 3114(141)

128× 384 946(10405) 541(6301) 2668(9038)

Re=400 (31 Picard iterations)

16× 48 441(4.93) 356(3.9) 716(2.13)

32× 96 528(51) 328(25) 1706(20.7)

64× 192 NC 405(408) 5366(246)

128× 384 NC 663(7025) NC

of the iterations in all Picard steps, which gives a complete picture of the whole problem.

In this case the difference between MSIMPLER and LSC is much more pronounced. The

reason must be the change of inner solver. Furthermore we see that SILU is faster than

MSIMPLER except for the finest grid in combination with the larger Reynolds numbers.Table 10: Driven 
avity �ow problem: The Navier-Stokes problem is solved with pre
onditioned Bi-CGSTAB with a

ura
y 10−6. MG and dire
t solver is used to solve subsystems (IFISS).
Grid Re=100 Re=500 Re=1000

LSC MSIMPLER LSC MSIMPLER LSC MSIMPLER

MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact MG/Exact

No. of iterations per Picard step

16× 16 14/10 10/9 53/29 28/25 102/55 50/53

32× 32 19/15 13/12 35/26 26/20 82/55 45/43

64× 64 22/22 19/19 34/29 25/25 63/55 34/32

128× 128 27/27 25/28 47/44 42/44 62/59 43/43

In order to see if the block preconditioners are sensitive to the inner accuracies we

compare one MG cycle for the inner solver with an exact inner solver in Table 10. From

this table it is clear that MSIMPLER is hardly effected by the inner accuracy, whereas LSC

is more sensitive in case of coarse grids in combination with a high Reynolds number.

8.3. Comparisons in 3D

Iterative solvers for the Navier-Stokes are especially important for 3D problems. In our

experiments, we used both hexahedra and tetrahedra. Only Taylor-Hood elements have



Preconditioners for Incompressible Navier-Stokes Solvers 271

8x8x16 16x16x32  24x24x48 32x32x40
0

20

40

60

80

100

120

140

160

180

200

Grid size

G
C

R
 i
te

ra
ti
o

n
s

(a)

 

 

8x8x16  16x16x32  24x24x48 32x32x40
0

100

200

300

400

500

600

700

800

900

1000

Grid size

C
P

U
 t

im
e

 (
s
)

(b)

 

 

8x8x16 16x16x32  24x24x48 32x32x40
10

1

10
2

10
3

Grid size

V
e

lo
c
it
y
 i
te

ra
ti
o

n
s

(c)

 

 

8x8x16 16x16x32  24x24x48 32x32x40
10

2

10
3

10
4

(d)

Grid size

P
re

s
s
u

re
 i
te

ra
ti
o

n
s

 

 

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER
SILU

SIMPLE
LSC
MSIMPLER

SIMPLE
LSC
MSIMPLER

Figure 8: 3D Ba
kward fa
ing step (hexahedra): The Stokes problem is solved with a

ura
y 10−6.PCG is used as inner solver in the blo
k pre
onditioners (SEPRAN).
been applied.

Fig. 8 shows results of the various preconditioners for the Stokes problem solved on

a 3D backward facing step with hexahedral elements. An IC preconditioned CG solver is

used as inner solver for the block preconditioners. MSIMPLER requires the least number

of iterations (inner/outer) and shows almost grid independent convergence behavior. The

computation time of SILU is also good, but for finer grids it becomes more expensive than

MSIMPLER.

In the Navier-Stokes problem it is sufficient to use an accuracy of 10−2 per Picard step.

In this case SILU performs slightly better than MSIMPLER, see Table 11.

To investigate the behavior of the preconditioners for tetrahedral elements we solved

the 3D lid driven cavity problem (Table 12). For the Stokes problem the result is compa-

rable to the hexahedral case. MSIMPLER requires less CPU time than LSC and SILU. The

number of GCR iterations is almost mesh-independent.



272 A. Segal, M. ur Rehman and C. VuikTable 11: 3D Ba
kward fa
ing step (hexahedra):The Navier-Stokes problem is solved with a

ura
y
10−4, a linear system at ea
h Pi
ard step is solved with a

ura
y 10−2 using pre
onditioned Krylovsubspa
e methods. Bi-CGSTAB is used as inner solver in blo
k pre
onditioners (SEPRAN).

Re SIMPLE LSC MSIMPLER SILU

GCR iter. (ts) Bi-CGSTAB iter. (ts)

8× 8× 16

100 200(23) 117(17.6) 74(9.6) 140(8.9)

200 314(31) 176(25) 112(14.8) 255(13.8)

400 509(47) 280(36) 168(21) 1688(49)

16× 16× 32

100 447(591) 173(462) 96(162) 321(114)

200 718(839) 256(565) 145(223) 461(173)

400 1277(1223) 399(745) 235(312) 768(267)

32× 32× 40

100 909(12000) 240(5490) 130(1637) 1039(1516)

200 > 1000 421(7784) 193(2251) 1378(2000)

400 > 2000 675(11000) 295(2800) 1680(2450)Table 12: 3D Lid driven 
avity problem (tetrahedra): The Stokes problem is solved with a

ura
y 10−6.PCG is used as inner solver in blo
k pre
onditioners (SEPRAN).
Grid LSC MSIMPLER SILU (Bi-CGSTAB)

iter. (ts)
in-it-u

in-it-p
iter. (ts)

8× 8× 8 9(0.24) 17

52
8(0.23) 16

53
32(0.25)

16× 16× 16 12(4.8) 49

152
11(3.4) 31

150
73(5.6)

32× 32× 32 17(89) 129

426
14(54) 68

380
237(162)Table 13: 3D Lid driven 
avity problem (tetrahedra): The Navier-Stokes problem is solved with a

ura
y

10−4, a linear system at ea
h Pi
ard step is solved with a

ura
y 10−2 using pre
onditioned Krylovsubspa
e methods. Bi-CGSTAB is used as inner solver in blo
k pre
onditioners (SEPRAN).
Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16× 16× 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32× 32× 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)

The situation for tetrahedral elements to discretize Navier-Stokes is different from that

of Stokes. Table 13 gives the CPU time and number of iterations. Now MSIMPLER proves

to be the best choice. The increase of iterations for increasing Reynolds number is caused

by an increase of the number of Picard iterations. The Reynolds dependency of all methods

per Picard iteration is only mild.



Preconditioners for Incompressible Navier-Stokes Solvers 273

9. Conclusions

In this paper we studied the convergence behavior of block preconditioners for Stokes

and Navier-Stokes problems both in 2D and 3D. Results for various grid sizes and Reynolds

numbers have been investigated. We also compared the convergence with an algebraic

preconditioner (SILU). Some common properties of MSIMPLER and LSC are discussed. In

all our experiments MSIMPLER proved to be cheaper than LSC. This concerns both the

number of outer iterations, inner iterations and CPU time. The number of outer iterations

in MSIMPLER hardly increases if a direct solver for the subsystems is replaced by an iter-

ative solver. This is in contrast with LSC where large differences are observed. It appears

that the combination of LSC with MG is almost optimal but the combination of LSC with a

PCG inner solver can take many iterations and much CPU time. When problems are solved

with low accuracy, for example in case of Navier-Stokes, SILU sometimes shows better per-

formance than other preconditioners. In case of stabilized elements there is no need to

use SILU, since standard ILU is a better alternative. MSIMPLER proved to be cheaper than

SILU, especially when the problem is solved with high accuracy.

If only the Stokes equations have to be solved, PMM and the Schur method are faster

than the other preconditioners. For fine grids the best results can be expected in case the

subsystems are solved by Algebraic Multigrid Preconditioned CG (AMG/CG).

It must be remarked that in case of stretched grids the performance of all precondition-

ers decreases as function of the stretching. In some cases even divergence occurs. Solving

this problem is a source for future research.

Acknowledgments The second author thanks the Higher Education Commission (HEC)

Pakistan for their support.

References

[1] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag New York,

Inc., 1991.

[2] M. Fortin. Old and new finite elements for incompressible flows. Int. J. Numer. Meth. Fluids,

1(4):347–364, 1981.

[3] C. Cuvelier, A. Segal, and A. A. van Steenhoven. Finite Element Methods and Navier-Stokes

Equations. Reidel Publishing Company, Dordrecht, Holland, 1986.

[4] C. R. Dohrmann and P. B. Bochev. A stabilized finite element method for the Stokes problem

based on polynomial pressure projections. Int. J. Numer. Meth. Fluids, 46(2):183–201, 2004.

[5] M. ur Rehman, C. Vuik, and G. Segal. A comparison of preconditioners for incompressible

navier-stokes solvers. Int. J. Numer. Meth. Fluids, 57:1731–1751, 2008.

[6] M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical

Solution of Boundary Value Problems. Elsevier Science Ltd. Noth-Holland, Amsterdam, 1983.

[7] O. Dahl and S. . Wille. An ILU preconditioner with coupled node fill-in for iterative solution

of the mixed finite element formulation of the 2D and 3D Navier-Stokes equations. Int. J.

Numer. Meth. Fluids, 15(5):525–544, 1992.

[8] S. . Wille and A. F. D. Loula. A priori pivoting in solving the Navier-Stokes equations. Com-

mun. Numer. Meth. Engng., 18(10):691–698, 2002.



274 A. Segal, M. ur Rehman and C. Vuik

[9] S. . Wille, O. Staff, and A. F. D. Loula. Efficient a priori pivoting schemes for a sparse di-

rect Gaussian equation solver for the mixed finite element formulation of the Navier-Stokes

equations. Appl. Math. Modelling, 28(7):607–616, July 2004.

[10] S. V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, New York, 1980.

[11] D. Kay, D. Loghin, and A. Wathen. A Preconditioner for the Steady-State Navier-Stokes Equa-

tions. SIAM J. Sci. Comput., 24(1):237–256, 2002.

[12] D. Silvester, H. Elman, D. Kay, and A. Wathen. Efficient preconditioning of the linearized

Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math., 128(1-2):261–279,

2001.

[13] H. Elman, V. E. Howle, J. Shadid, R . Shuttleworth, and R. Tuminaro. Block Preconditioners

Based on Approximate Commutators. SIAM J. Sci. Comput., 27(5):1651–1668, 2006.

[14] M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-Based Approach to the Oseen

Problem. SIAM J. Sci. Comput., 28(6):2095–2113, 2006.

[15] A. C. de Niet and F. W. Wubs. Two preconditioners for saddle point problems in fluid flows.

Int. J. Numer. Meth. Fluids, 54(4):355–377, 2007.

[16] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. J. Comput. Phys.,

182(2):418–477, 2002.

[17] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta

Numerica, 14:1–137, 2005.

[18] H. C. Elman, D. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers with

applications in incompressible fluids dynamics. Oxford University Press, Oxford, 2005.

[19] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using the finite

element techniques. Computers and Fluids, 1:73–100, 1973.

[20] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite element methods for

solving the stationary Stokes equations. Rairo Analyse Numerique, 7:33–76, 1973.

[21] D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element method for the Stokes equation.

Calcolo, 21:337–344, 1984.

[22] M. F. Murphy, G. H. Golub, and A. J. Wathen. A Note on Preconditioning for Indefinite Linear

Systems. SIAM J. Sci. Comput., 21(6):1969–1972, 2000.

[23] H. Elman, V. Howle, J. Shadid, D Silvester, and R. Tuminaro. Least squares preconditioners for

stabilized discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput., 30(1):290–

311, 2007.

[24] M. Benzi, M. A. Olshanskii, and Z. Wang. Augmented Lagrangian preconditioners for the

incompressible Navier-Stokes equations. Submitted to Int. J. Numer. Meth. Fluids, 2009.

[25] P. Wesseling. Principles of Computational Fluid Dynamics, volume 29. Springer Series in

Computational Mathematics, Springer, Heidelberg, 2001.

[26] C. Vuik, A. Saghir, and G. P. Boerstoel. The Krylov accelerated SIMPLE(R) method for flow

problems in industrial furnaces. Int. J. Numer. Meth. Fluids, 33(7):1027–1040, 2000.

[27] C. Li and C. Vuik. Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow.

Numer. Lin. Alg. Appl., 11(5-6):511–523, 2004.

[28] J.B. Perot. An analysis of the fractional step method. J. Comp. Phys., 108:51–58, 1993.

[29] J. Blasco, R. Codina, and A. Huerta. A fractional-step method for the incompressible Navier-

Stokes equations related to a predictor-multicorrector algorithm. International Journal for

Numerical Methods in Fluids, 28(10):1391–1419, 1998.

[30] A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762,

1968.

[31] M. Benzi, H. Choi, and D. Szyld. Threshold Ordering for Preconditioning Nonsymmetric

Problems. In G. Golub et al., editors, Sci. Comput., Proc. Workshop. Hong Kong, pages 159–



Preconditioners for Incompressible Navier-Stokes Solvers 275

165. Springer Verlag, 10–12 March 1997.

[32] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Int. J.

Numer. Meth. Engng., 23(2):239–251, 1986.

[33] T. Geenen, M. ur Rehman, S.P. MacLachlan, G. Segal, C. Vuik, A. P. van den Berg, and W. Spak-

man. Scalable robust solvers for unstructured FE geodynamic modeling applications: Solv-

ing the Stokes equation for models with large localized viscosity contrasts. Geochemistry

Geophysics Geosystems, 10:1–12, 2009. doi:10.1029/2009GC002526.

[34] M. ur Rehman, T. Geenen, C. Vuik, G. Segal, and S.P. MacLachlan. On iterative meth-

ods for the incompressible Stokes problem. Int. J. Numer. Meth. Fluids to appear. doi:

10.1002/fld.2235.

[35] Y. Notay. Flexible Conjugate Gradients. SIAM J. Sci. Comput., 22(4):1444–1460, 2000.

[36] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University

Press, Cambridge, 2003.

[37] A. van der Sluis. Condition numbers and Equilibration of Matrices. Numer. Math., 14:14–23,

1969.

[38] D. A. May and L. Moresi. Preconditioned iterative methods for Stokes flow problems arising

in computational geodynamics. Physics of the Earth and Planetary Interiors, 171:33–47, 2008.

[39] A Wathen. Preconditioning and convergence in the right norm. Int. J. Comput. Math.,

84(8):1199–1209, 2007.

[40] M. Arioli and D. Loghin. Stopping criteria for mixed finite element problems. ETNA, 29:178–

192, 2008.


