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UNIFORM Lp-BOUND OF THE ALLEN–CAHN EQUATION AND

ITS NUMERICAL DISCRETIZATION

JIANG YANG, QIANG DU, AND WEI ZHANG∗

Abstract. We study uniform bounds associated with the Allen–Cahn equation and its numerical
discretization schemes. These uniform bounds are different from, and weaker than, the conven-
tional energy dissipation and the maximum principle, but they can be helpful in the analysis of
numerical methods. In particular, we show that finite difference spatial discretization, like the
original continuum model, shares the uniform Lp-bound for all even p, which also leads to the
maximum principle. In comparison, a couple of other spatial discretization schemes, namely the
Fourier spectral Galerkin method and spectral collocation method preserve the Lp-bound only
for p = 2. Moreover, fully discretized schemes based on the Fourier collocation method for spa-
tial discretization and Strang splitting method for time discretization also preserve the uniform
L2-bound unconditionally.

Key words. Allen–Cahn Equations, maximum principle, operator splitting, uniform Lp-bound,
Fourier spectral methods.

1. Introduction

We consider the standard Allen–Cahn (AC) equation in this paper, which is
given as follows

∂u

∂t
= ǫ2∆u − f(u), x ∈ Ω, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω̄,
(1)

where u = u(x, t) is a real-valued scalar function, the nonlinear term is given by
f(u) = u3−u, the parameter ǫ > 0 characterizes the width of diffuse interface, and
Ω is a bounded domain in Rd. We restrict our attention to the periodic boundary
condition with Ω being the unit cell. The Allen–Cahn equation can be viewed as
an L2-gradient flow of the following Ginzburg-Landau free energy functional

(2) E(u) =

∫

Ω

(

1

2
ǫ2|∇u|2 + F (u)

)

dx,

where F (u) is taken as the typical double well potential F (u) = 1
4 (u

2 − 1)2 so that
f(u) = F ′(u). We also assume that the initial data u0 = u0(x) takes value between
the energy wells, i.e., bounded by the constant 1.

The Allen–Cahn equation has been introduced by Allen and Cahn in [1] to
describe the motion of anti-phase boundaries in crystalline solids. The equation also
bears other names, for example, the Ginzburg-Landau equation where the unknown
solution may be real, complex, or vector-valued [8, 21]. It is now a basic model
equation for the diffuse interface (phase field) approach developed to study phase
transitions and interfacial dynamics in materials science as well as various problems
in many other applications [4, 7]. There have also been extensive numerical studies
of phase field and diffuse interface models, see, e.g. [6, 16, 20].
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One of the important issues concerning numerical solution of differential equa-
tions is the stability of numerical schemes. For nonlinear models, a priori bounds
on the discrete solutions are often important to the numerical stability. Given AC
being a typical gradient flow, we have

d

dt
E = −‖ut‖

2
2 ≤ 0 and E(t) ≤ E(0),

which represents the energy bound of the original continuum model. The preserva-
tion of such nonlinear energy bounds by numerical approximations often dominates
the discussions in numerical analysis, In [11], Eyre proposed an unconditionally
stable energy convex splitting scheme for general gradient flows, but it is only first
order. Some recent stability analysis can be found in[12, 13, 14, 24, 28, 29], where
most authors again focused on the energy dissipation.

Another intrinsic bound for the Allen–Cahn equation is the point-wise bound in
the form of a maximum principle, see, e.g., [10]. Specifically, if the initial data u0(x)
takes value between the energy wells, i.e., bounded by the constant 1, then the time-
dependent solution of the Allen–Cahn equation is also bounded by constant 1. Such
a property can be preserved numerically on the discrete level, see for example [5, 27]
for discussions on fully discrete finite volume and finite difference approximations.
The discrete maximum principle was further extended to generalized Allen–Cahn
equations and fractional Allen–Cahn equations [18, 23]. In these works, the space
Laplace operator is discretized by central finite difference. Similar results have
been established for finite volume schemes as well as finite element methods with
mass lumping based on Voronoi-Delaunay meshes, see [6] and the references cited
therein. However, it is known that the maximum principle can not be preserved in
general by spectral methods, since the spectral projection itself may fail to retain
point-wise bounds. Hence, we do not expect that spectral methods preserve the
maximum principle for nonlinear Allen–Cahn equations.

In this paper, we present some bounds on solutions other than the energy bound
and maximum principle for the Allen–Cahn equation and its numerical discretiza-
tion. Specifically, we consider weaker Lp-bounds. First, we define the Lp-average
norm |||·|||p of u in the fixed domain Ω for any p > 0,

(3) |||u|||p =
1

SΩ
‖u‖pLp(Ω) =

1

SΩ

∫

Ω

|u|pdx,

where SΩ is the volume of the domain Ω. Given the assumed bounds on the initial
data, by applying the maximum principle directly, we can obtain

(4) |||u|||p(t) =
1

SΩ

∫

Ω

|u(x, t)|pdx ≤
1

SΩ

∫

Ω

1dx = 1,

which is uniform not only in space and time, but also with respect to the domain
Ω, the diffuse interface width ǫ and the exponent p. This uniform Lp-bound is,
of course, weaker than the maximum principle. On the other hand, the uniform
Lp-bound implies the maximum principle if it holds for a sequence of p that goes
to infinity. The larger p one can pick, the closer Lp-bound is to the maximum
principle.

Computationally, we are often interested in constructing discrete numerical schemes
that preserve the properties of the continuum equations as much as possible. How-
ever, this is not always possible for complex systems. Hence, it is interesting to
know to what extent, weaker results can be established which may still allow the
numerical schemes to provide reliable computational predictions. For example, it is
obvious that there could be more flexibility designing numerical schemes to preserve
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the uniform Lp-bound instead of the maximum principle. In this paper, we show
that the semi-discretized system with finite difference for spatial discretization can
preserve the uniform Lp-bound for all even integer p, thus leading to the discrete
maximum principle as p goes to infinity. On the other hand, the semi-discrete
system with Fourier Galerkin/collocation methods for spatial discretization only
preserves the uniform L2-bound and fails to preserve the maximum principle.

The rest of the paper is organized as follows. In Section 2, we first prove the uni-
form Lp-bound for the continuum Allen–Cahn equations without using maximum
principle. The performances of semi-discrete schemes on preserving the uniform
Lp-bound are studied in Section 3, including finite difference methods and Fourier
Galerkin/collocation methods. In the following section, we first review some regular
time stepping schemes, and then adopt operator splitting for the time discretiza-
tion. We show that the second order Strang splitting can preserve the uniform
L2-bound unconditionally. Some numerical examples are carried out to verify the
numerical analysis in Section 5, and some concluding remarks are given in the final
section, in particular, with respect to the extension to vector valued Allen–Cahn or
Ginzburg-Landau systems.

2. Uniform Lp-bound for continuum equations

In this section, we will establish the Lp-bound for continuum Allen–Cahn equa-
tions for even p. We start with a useful lemma.

Lemma 1. For a nonnegative function y(t), y(t) ∈ C1[0,+∞) satisfies
{

dy
dt ≤ c(y − y2),
y(0) = y0,

where c is a positive constant and 0 ≤ y0 < 1. Then

y(t) ≤ 1, ∀t ≥ 0.

Proof. Since 0 ≤ y(0) < 1 and y = y(t) is continuous, there exists a α > 0 such
that y(t) ≤ 1, for any t ∈ [0, α). If the conclusion of the lemma does not hold, then
there exists a t1 > α such that y(t1) > 1. Let us define

β = min{ t | y(t) = 1 and ∃δ(t) > 0 s.t. y(s) > 1, ∀s ∈ (t, t+ δ(t))},

then it is easy to see α ≤ β < t1 and y(β) = 1. Moreover, for t ∈ (β, β + δ(β)], we
have y(t) > 1. Thus,

y′(t) ≤ c(y − y2) < 0, t ∈ (β, β + δ(β)].

Consequently,

y(β + 1
2δ(β)) =

∫ β+δ(β)/2

β
y′(s)ds+ y(β)

≤
∫ β+δ(β)/2

β c(y(s)− y2(s))ds+ 1 ≤ 1.

However, we know that y(β + 1
2δ(β)) > 1, which leads to a contradiction. This

establishes the lemma. �

We next prove that solutions to the continuous model (1) satisfy the uniform
Lp-bound without using the maximum principle.

Theorem 1. For the Allen–Cahn equation (1), if the initial data u0 = u0(x)
satisfies

(5) max
x∈Ω̄

|u0(x)| ≤ 1,
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then the solution u = u(t, x) satisfies the Lp-bound for any even integer p, that is,

(6) |||u(t, ·)|||p ≤ 1, ∀t ≥ 0.

Proof. First we prove that (6) holds when p = 2. Using the periodic boundary
condition and taking L2 inner product of the Allen–Cahn equation (1) with u

yields

(7)
1

2

d‖u‖22
dt

= −ǫ2‖∇u‖22 + ‖u‖22 − ‖u2‖22,

where we have taken the fact that (u, u3) = ‖u2‖22. By letting φ = 1 and ψ = u2

and using the Cauchy-Schwarz inequality, we arrive at

(8) ‖u2‖22 =
1

SΩ
‖φ‖22‖ψ‖

2
2 ≥

1

SΩ
|(φ, ψ)|2 =

1

SΩ
‖u‖42.

Dividing (7) by SΩ and combining with (8), we get

(9)
d|||u|||2
dt

≤ 2(|||u|||2 − |||u|||
2
2).

Since the initial data u0(x) ∈ C(Ω) satisfies (5), we have 0 ≤ |||u(0, ·)|||2 ≤ 1. If
|||u(0, ·)|||2 = 1, then u(t, x) ≡ u0(x) ≡ ±1 for all t. Thus |||u(t, ·)|||2 ≡ 1. For the
case 0 ≤ |||u(0, ·)|||2 < 1, we have

(10) |||u(t, ·)|||2 ≤ 1, ∀t ≥ 0

thanks to Lemma 1. We are ready to complete the proof by mathematical induction
for p > 2. We assume (6) holds for p = 2k − 2 as k > 1, i.e.

(11) |||u|||2k−2 =
1

SΩ
‖uk−1‖22 ≤ 1.

To prove that it still holds for p = 2k, we take the L2 inner product of the Allen–
Cahn equation (1) with u2k−1 to get

(12)
1

2k

d‖u‖2k2k
dt

= −ǫ2(2k − 1)‖uk−1∇u‖22 + ‖u‖2k2k − (u3, u2k−1).

With (11), the last term on the right-hand side of the above equation can be
estimated as

(u3, u2k−1) = ‖uk+1‖22 ≥

(

1

SΩ
‖uk−1‖22

)

‖uk+1‖22

≥
1

SΩ
(uk−1, uk+1)2 =

1

SΩ

(

‖u‖2k2k
)2
.

Hence, we arrive at

(13)
1

2k

d‖u‖2k2k
dt

≤ ‖u‖2k2k −
1

SΩ

(

‖u‖2k2k
)2
.

Dividing (13) by SΩ gives a similar inequality as (9),

d|||u|||2k
dt

≤ 2k(|||u|||2k − |||u|||22k).

Meanwhile, since |||u(0)|||2k ≤ 1, the remaining derivation can be done in the same
way as in the case when p = 2. �

The Lp-bound is weaker than the maximum principle. However, this uniform
Lp-bound offers us one way to prove the maximum principle as p goes to infinity.
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Corollary 1. (Maximum principle) For the Allen–Cahn equation (1), if
the initial data u0 = u0(x) satisfies (5), then the solution u = u(t, x) satisfies the
maximum principle, that is,

(14) ‖u(t, ·)‖∞ ≤ 1, ∀t ≥ 0.

It is noted that although we have exclusively focused on the periodic boundary
condition case, from the derivations presented in this section one can see that
the results given here remain valid for homogeneous Neumann/Dirichlet boundary
conditions as well.

3. Semi-discrete schemes and uniform Lp-bound

In this section, we investigate the uniform Lp-bound of semi-discrete schemes,
including central finite difference, Fourier Galerkin method, and Fourier collocation
method for the spatial discretization. To demonstrate the main idea, without loss
of generality, we only consider problems defined on [0, 2π] to avoid the use of more
complicated tensor notation and multiple indices. Besides more involved notations,
our analysis can be extended to both 2D and 3D cases trivially.

3.1. Finite difference methods and Lp-bound. We first use the central finite
difference method to discretize the Laplace operator. We take the uniform mesh
on [0, 2π], i.e. xj = 2πj

N , j = 0, 1, · · · , N − 1. Thus, the discrete operator Dh

can be viewed as the composition of one forward difference D+ and one backward
difference D−, i.e., Dh = D+D−. In matrix form, if we denote D− by D1, then
D+ can be represented by −DT

1 , hence Dh = −DT
1 D1 with the matrices given as

follows for the periodic boundary condition:

Dh =
1

h2















−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2















N×N

,

D1 =
1

h















1 −1
−1 1

. . .
. . .

. . .

−1 1
−1 1















N×N

.

Let Uj(t) denote the approximation of u(t, xj), U = (U0, U1, · · · , UN−1)
T , and

U .k = (Uk
0 , U

k
1 , · · · , U

k
N−1)

T . Then we end up with the following nonlinear ordinary
differential equation (ODE) system

{

dU
dt = ǫ2DhU + U − U .3,

U(0) = U0 = (u0(x0), u0(x1), · · · , u0(xN−1))
T ,

(15)

Lemma 2. For the discrete N ×N matrix Dh defined above, we have

(16)
(

U .(2p−1)
)T

DhU ≤ 0, ∀ U ∈ RN , p ≥ 1.

Proof. Since Dh = −DT
1 D1, we get

(

U .(2p−1)
)T

DhU = −(D1U
.(2p−1))TD1U.
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The jth element of D1U
.(2p−1) and D1U are given respectively as follows

(

D1U
.(2p−1)

)

j
=
U

(2p−1)
j − U

(2p−1)
j−1

h
, (D1U)j =

Uj − Uj−1

h
.

Consequently,
(

D1U
.(2p−1)

)

j
(D1U)j ≥ 0.

Thus, a summation over j leads to (16). �

On the discrete level, we can define the corresponding average Lp-norm as

|||U |||p =
1

2π
h

N
∑

j=0

|Uj|
p =

1

N

N
∑

j=0

|Uj|
p.

Theorem 2. For the Allen–Cahn equation (1), if the initial data u0 = u0(x)
satisfies (5), then the numerical solution U(t) given by the semi-discrete finite dif-
ference method (15) satisfies the uniform Lp-bound for any even number p in the
sense that

(17) |||U(t)|||p ≤ 1, ∀t ≥ 0.

Furthermore, we have

(18) ‖U(t)‖∞ ≤ 1, ∀t ≥ 0.

The proof for (17) is similar to the continuum case, thanks to Lemma 2. We
skip the details here. For (18), i.e., discrete maximum principle, we can derive it
from (17) .

3.2. Fourier Galerkin method and the uniform L2-bound. We now con-
sider the semi-discrete Fourier Galerkin approximation of the Allen–Cahn equation
with the periodic boundary condition on the domain [0, 2π]. That is, we seek real

solutions uN (t, x) in the space B̂N = span{einx}|n|≤N , i.e.,

(19) uN(t, x) =
∑

|n|≤N

an(t)e
inx,

where the coefficients an(t) are solved by making the residual

(20) RN (t, x) =
∂uN(t, x)

∂t
−

(

ǫ2
∂2uN (t, x)

∂x2
+ uN(t, x) − (uN (t, x))3

)

,

orthogonal to B̂N . We define the L2-Fourier projection PN [ω](x) of ω ∈ L1[0, 2π]
given by

PN [ω](x) =
∑

|n|≤N

ω̂(n)einx, ω̂(n) :=
1

2π

∫ 2π

0

ω(x)e−inxdx.

The orthogonality is then equivalent to PNRN (t, x) = 0, i.e.,

(21)
∂uN(t, x)

∂t
= ǫ2

∂2uN (t, x)

∂x2
+ uN (t, x)− PN [u3N (t, x)],

where we have taken into account that all terms in the residual (20) are in B̂N

except for u3N(t, x). According to (3), the L2-average norm |||uN(t, ·)|||2 of uN(t, x)
is given as

(22) |||uN(t, ·)|||2 =
1

2π
||uN (t, ·)||

2
2 =

1

2π

∫ 2π

0

|uN(t, x)|2dx =
∑

|n|≤N

|an(t)|
2.
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For the projection operator PN we have the following lemma.

Lemma 3. For the real-valued solution uN (t, x) given in the form of (19), we
have

(23)
(

PN [u3N (t, ·)], uN (t, ·)
)

≥ 2π|||uN (t, ·)|||22.

Proof. It is easy to check that
(

PN [u3N (t, ·)], uN (t, ·)
)

=
(

u3N (t, ·), uN (t, ·)
)

.

Since uN (t, x) is real-valued, we have the fact that
(

u3N (t, ·), uN (t, ·)
)

= ‖u2N(t, ·)‖22 =
1
2π‖1‖

2
2 ‖u2N(t, ·)‖22

≥ 1
2π |(u

2
N (t, ·), 1)|2 = 1

2π‖uN(t, ·)‖42 = 2π|||uN (t, ·)|||
2
2.

Thus, we get (23). �

Theorem 3. For the Allen–Cahn equation (1), if the initial data u0 = u0(x)
satisfies

|||u0|||2 ≤ 1,

then the solution uN(t, x) given by the Fourier-Galerkin method (21) satisfies the
uniform L2-bound in the sense that

(24) |||uN (t, ·)|||2 ≤ 1, ∀t ≥ 0.

Proof. Taking the L2 inner product of equation (21) with uN(t, x) yields

1

2

d‖uN‖22
dt

= −ǫ2‖
∂uN

∂x
‖22 + ‖uN‖22 − (PN [u3N ], uN ).

By Lemma 3, we have the similar inequality as (9)

d|||uN |||2
dt

≤ 2(|||uN |||2 − |||uN |||
2
2).

We can then get (24) by using the same argument presented in the proof of the
Theorem 1 . �

We do not expect the uniform Lp-bound for the Fourier Galerkin methods for p
greater than 2. This is because, for all even number p > 2, we generally have

(25) (PN [u3N ], up−1
N ) 6= (u3N , u

p−1
N ),

However, for any real-valued triangular polynomial uN the following inequality still
holds

(26)

(

∂2

∂x2
uN , u

2p−1
N

)

≤ 0, p ≥ 1.

Hence, Fourier Galerkin methods generally fail to preserve the maximum principle
for the Allen–Cahn equation due to (25).

On the other hand, we note that in the absence of nonlinearity, then the Fourier
Galerkin methods may still be able to preserve suitable estimates for linear models.
The latter is not directly related to the study of Allen-Cahn models but could be of
its own independent interest. For example, the next corollary immediately follows
from (26).
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Corollary 2. (Uniform bound for the linear heat equation) If the heat
equation ut = ǫ∆u with a periodic boundary condition is solved by Fourier Galerkin
methods given by ∂

∂tuN = ǫ2∆uN . Then,

|||uN (t, ·)|||p ≤ |||uN(0, ·)|||p

for any even positive integer p. Consequently, if the initial data u0 = u0(x) satisfies
|||PNu0|||p ≤ 1 for all even number p, then the solution uN = uN (t, ·) has the
following uniform bound

‖uN(t, ·)‖∞ ≤ 1, ∀t ≥ 0.

3.3. Fourier collocation methods and the uniform L2-bound. We turn to
the semi-discrete Fourier collocation method for the Allen–Cahn equation with
periodic boundary condition on domain [0, 2π]. We choose the discrete points as

the Fourier collocation points in [0, 2π], i.e. xj = 2πj
N , j = 0, 1, · · · , N − 1. Same

as in the finite difference scheme, we use Uj(t) to denote the approximation of
u(t, xj), U = (U0, U1, · · · , UN−1)

T , and (U).k = (Uk
0 , U

k
1 , · · · , U

k
N−1)

T . Though in

this case, we use DC
h to denote the differentiation matrix associated with Fourier

spectral-collocation methods for the second order derivative. For more details, we
refer to [22]. Then we end up with the following nonlinear ODE system

{

dU
dt = ǫ2DC

h U + U − (U).3,
U(0) = U0 = (u0(x0), u0(x1), · · · , u0(xN−1))

T ,
(27)

Since DC
h is negative semidefinite, we have a similar result as Theorem 3 for Fourier

collocation methods.

Theorem 4. For the Allen–Cahn equation, if the initial data u0 = u0(x) sat-
isfies

∣

∣

∣

∣

∣

∣U0
∣

∣

∣

∣

∣

∣

2
≤ 1.

then the numerical solution U(t) given by the Fourier collocation method (27) sat-
isfies the uniform L2-bound in the sense that

(28) |||U(t)|||2 ≤ 1, ∀t ≥ 0.

In this case, we observe that we are unable to derive the uniform Lp-bound for
p > 2 due to the inequality that, for any U ∈ RN and all even number p > 2,

(29)
(

U .(2p−1)
)T

DC
h U � 0.

This is in contrast with Fourier Galerkin methods, for which the complication comes
from the nonlinear term.

4. Fully discrete schemes and the uniform Lp-bound

Next we intend to consider fully discrete schemes for the Allen–Cahn equation
that preserve some uniform Lp-bound. Based on the study of semi-discrete schemes
in the previous section, we expect that the full discretization with finite difference
spatial discretization may be able to preserve the numerical maximum principle,
but not the Fourier Galerkin/collocation methods.
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Table 1. Performances of four schemes over preserving numerical
maximum principle.

Scheme Linear/Nonlinear Accuracy Time step constraint

semi-implicit (30) Linear First-order τ ≤ 1

2

stabilized semi-implicit (31) Linear First-order 1

τ
+ β ≥ 2

convex splitting (32) Nonlinear First-order Unconditionally

Crank-Nicolson (33) Nonlinear Second-order τ ≤ min{ 1

2
, h2

2ǫ2
}

4.1. Time stepping schemes with discrete maximum principle. In this
part, we consider the time discretization for the semi-discrete system (15). Sev-
eral standard time-stepping schemes are able to preserve the uniform Lp-bound,
including semi-implicit scheme

(30)
Un+1 − Un

τ
= ǫ2DhU

n+1 + Un − (Un).3,

stabilized semi-implicit scheme

(31)
Un+1 − Un

τ
= ǫ2DhU

n+1 − b(Un+1 − Un) + Un − (Un).3, b > 0

convex splitting scheme

(32)
Un+1 − Un

τ
= ǫ2DhU

n+1 + Un − (Un+1).3,

and second order Crank-Nicolson scheme

(33)
Un+1 − Un

τ
= ǫ2Dh

Un+1 + Un

2
+
Un+1 + Un

2
−

(Un+1).3 + (Un).3

2
.

The first two schemes are proved to preserve the numerical maximum principle
under some time step constraint in [27]. The convex scheme can preserve the max-
imum principle unconditionally, which can be proved by following the techniques
offered in [27]. The last scheme is also shown to preserve numerical maximum
principle conditionally [18]. The table below is the summary of the properties and
conditions associated to the above schemes.

4.2. The splitting method and uniform L2-bound. For the spectral methods,
we only take Fourier collocation methods as an example. We use operator splitting
technique time discretization to solve the semi-discrete system (27). The ODE
system can be split into two sub-problems involving the nonlinear part

(34) A :
dV

dt
= V − (V ).3,

and the linear part

(35) B :
dW

dt
= ǫ2DC

h W.

To keep the presentation short, we denote SA
t V0 to represent the solution of the

Problem A at time t starting from initial value V0 at time 0. Similarly, SB
t W0

represents the solution of the Problem B at time t starting from initial value W0

at time 0. Taking the similar notation in [3], we can obtain high order splitting
methods in form

(36) Un+1 = PsU
n =

s
∏

j=1

SB
bjτS

A
ajτU

n = SB
b1τS

A
a1τS

B
b2τS

A
a2τ · · · S

B
bsτS

A
asτU

n,
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where τ is the time step size. For example, when s = 2, a1 = a2 = 0.5, b1 = 1 and
b2 = 0, this is the famous second order Strang splitting given in [25] as

(37) Un+1 = P2U
n = SA

τ
2

SB
τ SA

τ
2

Un.

An example of fourth order splitting scheme can be found in [3, 26].
We note that the exact solutions of such splitting schemes are readily available

since each of two sub-problems can be solved exactly with solutions given respec-
tively by:

(38) vn+1
j = SA

τ v
n
j =

vnj
√

e−2τ + (1− e−2τ )(vnj )
2
, j = 0, 1, · · · , N − 1,

to Problem A and

(39) Wn+1 = SB
τ W

n = eτǫ
2DC

h Wn,

to Problem B. The computation in (38) is point-wise computing with a cost of
O(N) operations. One may apply FFT to handle the computation in (39) with a
cost of O(N logN) operations. These types of algorithms have been widely used
before, see e.g., [2].

For the discrete form of average L2-norm defined consistently with (4) as

(40) |||u|||2 =
1

2π
‖u‖22 =

1

2π

N−1
∑

j=0

2π

N
|uj |

2 =
1

N

N−1
∑

j=0

|uj |
2,

we assume that the initial data U0 = (u0(x0), u0(x1), · · · , u0(xN−1))
T satisfy

(41) |||u0|||2 =
1

N

N−1
∑

j=0

|u0(xj)|
2 ≤ 1.

By noticing that the function

g(α) =
α

e−2τ + (1 − e−2τ )α
,

is monotone increasing and concave in [0,+∞), we have

(42)
∣

∣

∣

∣

∣

∣V n+1
∣

∣

∣

∣

∣

∣

2
=

1

N

N−1
∑

j=0

g((V n
j )2) ≤ g(|||V n|||2) .

for the Problem A. Since g(1) = 1, it is easy to see from (42) that if V n satisfies
|||V n|||2 ≤ 1, then

∣

∣

∣

∣

∣

∣V n+1
∣

∣

∣

∣

∣

∣

2
≤ 1. Meanwhile, it is quite obvious that

(43)
∣

∣

∣

∣

∣

∣Wn+1
∣

∣

∣

∣

∣

∣

2
≤ |||Wn|||2,

since DC
h is negative semidefinite. Combining (42) with (43) implies following

theorem.

Theorem 5. For the Allen–Cahn equation, if the initial data satisfy the as-
sumption (41), then solution obtained by the fully discrete Strang splitting method
defined as (37) satisfies the uniform L2-bound in the sense that

(44) |||Un|||2 =
∣

∣

∣

∣

∣

∣(P2)
nU0

∣

∣

∣

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣

∣

∣

∣
(SA

τ
2

SB
τ SA

τ
2

)nU0
∣

∣

∣

∣

∣

∣

∣

∣

∣

2
≤ 1

for all n > 0 with positive time step τ .
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Table 2. Errors and convergence rates at T = 1 compared with
reference solutions.

Order τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.025

2nd
Error 5.88e-7 1.47e-7 3.69e-8 9.23e-9
Rate - 1.995 1.999 2.000

4th
Error 6.68e-11 4.19e-12 2.54e-13 1.69e-14
Rate - 3.997 4.040 3.910

RK4
Error 9.92e-7 6.72e-8 4.37e-9 2.79e-10
Rate - 3.884 3.942 3.971

Table 3. Errors and convergence rates at T = 10 compared with
reference solutions.

Order τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.025

2nd
Error 6.27e-3 1.59e-3 3.98e-4 9.95e-5
Rate - 1.984 1.996 1.999

4th
Error 5.48e-7 2.77e-8 1.61e-9 9.90e-11
Rate - 4.308 4.104 4.024

Remark 1. If we use finite difference for the space discretization and Strang
splitting method in time, we get two sub-problems

A :
dV

dt
= V − (V ).3, B :

dW

dt
= ǫ2DhW.

Clearly, if the initial value is bounded by 1, the solution of problem A is entirely
bounded by 1. From Lemma 2, the maximum value of the solution to problem B is
no larger than the maximum value of initial value. This means if we solve the Allen–
Cahn equation by this technique, we will achieve the discrete maximum principle
unconditionally. Meanwhile, it is both second-order accurate in time and in space.

5. Numerical tests

In this section, we carry out numerical experiments to verify our numerical anal-
ysis. Since standard time stepping scheme with spatial finite difference approxi-
mations have been studied in [27] and [18], we focus on the Fourier collocations
for space and splitting scheme in time scheme. The scheme can be implemented
efficiently as discussed previously.

5.1. Numerical results. Our analysis is independent of spatial dimensions, but
for simplicity, we only consider a one-dimensional version of (1) with periodic
boundary condition. The initial condition is chosen as

u0(x) = 0.05 sin(x).

The parameter ǫ2 is 0.01, the computation domain is [0, 2π] and the mesh size in
space is h = π

64 . We take solutions obtained by the fourth order Runge-Kutta
(RK4) method with very small time step τ = 0.001 as reference solutions to test
convergence rates. The numerical results are showed in Table 2 and Table 3.

From the two tables, we can see that all numerical schemes achieve the optimal
convergence rate. By comparing the two splitting schemes with each other, we see
that the fourth order splitting scheme is much more accurate than the second order
scheme. Furthermore, we can observe that among the two fourth order schemes,
the splitting scheme can enhance the accuracy significantly over the standard RK4.
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This can be attributed to the absence of other discretization errors at each time
level except for the splitting error.

0 2 4 6
−1

−0.5

0

0.5

1
Solution at T=100 with τ=0.01

0 1 2 3
0

1

2

3

4

5

6
x 10

296 L2−average with τ=0.1

Figure 1. Solutions with fourth order Runge-Kutta methods.

We now study the performances of two splitting schemes in long time simulations
with large time steps. We will use the L2-average defined by (40) to measure the
robustness of schemes. We also use the same example as above. First, we get a
reference solution at T = 100 by RK4 with a small time step τ = 0.01. Then for
larger time steps, say τ = 0.1, the L2 norm blows up at T = 3 for RK4, which is
presented in Fig. 1. On the other hand, we can find the splitting schemes allow
much larger time steps.

0 2 4 6
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Second order  with τ=0.5 at T=100
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L2−average of second order
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1
L2−average of fourth order

Figure 2. Solutions at T = 100 with τ = 0.5 by two splitting schemes.

In Fig. 2, we observe that both splitting schemes work quite well for τ = 0.5
in reaching a steady state solution and the L2-average is uniformly bounded by 1.
But when we enlarge the time step to τ = 2 (shown in Fig. 3), the second order
splitting scheme gives us nearly the same steady state as the one using a smaller
step size but the fourth order splitting scheme gets totally wrong solutions. This
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Figure 3. Solutions at T = 100 with τ = 2 by two splitting schemes.

indicates that we might need some time step constraint to get the true steady state
for fourth order splitting methods due to the appearance of negative fractional time
steps. In experiments not reported here, we observe that the second order splitting
scheme can guarantee the L2-bound even when τ = 100, which is in good agreement
with the results of Theorem 5, but the fourth order schemes blows up very fast,
indicating again that the latter, while more stable than RK4, are less stable than
the second order counterpart.

6. Concluding remarks

In this work, a new uniform Lp-bound for the Allen–Cahn equation and its dis-
cretization schemes are presented, which differs from the conventional energy bound
and maximum principle. Concerning practical fully discrete numerical schemes for
the Allen–Cahn equation, due to the smoothness of phase field functions in space,
it is well-known that high order time discretization tends to reduce the overall
computational cost. In more recent years, high order in time disccretizations are
also receiving more and more attention [19, 29]. Theoretical results presented in
this work inform us that the second order Strang splitting scheme unconditionally
preserves the uniform L2-bound, hence it enjoys some forms of stability and has
low computational cost. Extensive experiments also provide demonstrations of the
effectiveness in combining high order time splitting schemes with Fourier colloca-
tion spatial discretization. This further motivates development of other high order
schemes for Allen–Cahn and other interesting nonlinear dynamic systems in the
future.

We end this paper with some discussions on the extension to vector-valued Allen–
Cahn (Ginzburg-Landau) equations [6, 21], in which u : Rd → Rd satisfies

∂u

∂t
= ǫ2∆u+ u− |u|2u.
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Here | · | denotes the standard Euclidean norm in Rd. We can easily extend
all theoretical results for the scalar-valued Allen–Cahn equations to vector-valued
Ginzburg-Landau equations on both continuum level and discrete level since

(|u|2uk, u
2p−1
k ) ≥ (u3k, u

2p−1
k )

always holds for each real-valued component uk. Even for the operator splitting
methods, the subproblem ∂u

∂t = u− |u|2u can be solved in the explicit form

u(t) =
u(0)

√

e−2t + (1− e−2t)|u(0)|2
.

It will be interesting to study similar investigations on other extensions of the
Ginzburg-Landau and Allen–Cahn dynamics in the future.
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