
INTERNATIONAL JOURNAL OF c⃝ 2017 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 14, Number 6, Pages 916–934

SPARSE AUTOMATIC DIFFERENTIATION FOR COMPLEX

NETWORKS OF DIFFERENTIAL-ALGEBRAIC EQUATIONS

USING ABSTRACT ELEMENTARY ALGEBRA

SLAVEN PELEŠ AND STEFAN KLUS

Abstract. Most numerical solvers and libraries nowadays are implemented to use mathematical
models created with language-specific built-in data types (e.g. real in Fortran or double in C) and
their respective elementary algebra implementations. However, the built-in elementary algebra

typically has limited functionality and often restricts the flexibility of mathematical models and
the analysis types that can be applied to those models. To overcome this limitation, a number
of domain-specific languages such as gPROMS or Modelica with more feature-rich built-in data
types have been proposed. In this paper, we argue that if numerical libraries and solvers are

designed to use abstract elementary algebra rather than the language-specific built-in algebra,
modern mainstream languages can be as effective as any domain-specific language. We illustrate
our ideas using the example of sparse Jacobian matrix computation. We implement an automatic
differentiation method that takes advantage of sparse system structures and is straightforward to

parallelize in a distributed memory setting. Furthermore, we show that the computational cost
scales linearly with the size of the system.

Key words. Sparse automatic differentiation, differential-algebraic equations, abstract elemen-

tary algebra.

1. Introduction

Differential-algebraic equations (DAEs) are ubiquitous in systems engineering
problems, especially in design applications [5, 25, 27, 11, 12]. Mathematical models
in this area are typically heterogeneous and very sparse. Obtaining the sparse Jaco-
bian for such problems is critical for successful solving or preconditioning strategies.

Additional challenges arise from the need to effectively manage the complexity
of system engineering models. The model equations are typically not in a single
central place, but assembled from component model equations loaded from multi-
ple dynamic libraries. Furthermore, the component model structure can (and often
does) change at runtime. For example, when designing a heat exchanger one may
want to keep inlet and outlet temperatures constant at operating conditions and
optimize the heat exchanger geometry parameters. In the transient simulations,
however, the heat exchanger geometry is fixed and temperatures are system vari-
ables. The variable and parameter designation is selected by the designer as needed
at runtime. The ability to reuse the same model for different types of analyses is
required to reduce the cost of the computation deployment as well as the cost of
component model verification and validation.

To address these requirements, domain-specific modeling languages based on
symbolic code manipulations such as gPROMS [17] and Modelica [18] have been
introduced. Tools built around these languages [6, 26, 15, 20, 16] allow engineers
to work in a more interactive design environment where they can make modifica-
tions of their models at runtime. These tools go beyond Jacobian generation and

Received by the editors March 27, 2017.
2010 Mathematics Subject Classification. 68W30, 68U20, 68N19.

916

ABSTRACT ELEMENTARY ALGEBRA 917

perform a number of transformations on the mathematical model, such as causal-
ization, tearing, and index reduction to make subsequent simulations more efficient
(see e.g. [3] and references therein). Under the hood, the model encoded in the
domain-specific language is processed symbolically and code compatible with the
numerical solver is generated and compiled on the fly. Then, such a hard-wired
precompiled model is simulated and the result is returned to the user. This ap-
proach was pioneered in compiler automatic differentiation tools such as ADIC [2]
and OpenAD/F [23].

Symbolic manipulations and compiling automatically generated code on the fly
allow one to reuse models coded in a domain-specific language for different types of
analyses using different numerical solvers. The downside is that the model needs to
be regenerated and recompiled every time the model structure is modified. Scaling
up this approach to more complex problems is another challenge as the symbolic
preprocessing of model equations may become a bottleneck. In such a framework
one needs to support two different parallelization schemes – one for the symbolic
manipulations of the model equations and another one for solving these equations
numerically. Symbolic transformations are generally nontrivial to parallelize. The
more features the domain-specific language offers, the more complex the symbolic
processing algorithms become and so does their parallel implementation. At the
time of this writing, we are not aware of distributed memory parallel schemes for
the symbolic processing of mathematical equations.

Modern object-oriented languages, such as C++, which support operator over-
loading, template specialization, type traits, and other advanced features allow one
to create numerical models that can be reconfigured at runtime. In this paper we
argue that the same functionality provided by symbolic preprocessing of the model
equations can be implemented by creating custom data types and appropriate li-
braries in mainstream object-oriented languages. Recently, solver frameworks that
use abstract data types were proposed [1]. Those frameworks do not require spe-
cific data types to be used, but only specify elementary algebra that the data types
have to support. By designing models and solvers to use abstract data types, one
can reuse the same models and solvers for multiple analysis types such as forward
simulations, optimization, sensitivity analysis, or embedded uncertainty quantifi-
cation [4]. Switching between these may be accomplished simply by changing (or
reconfiguration of) the data type. Furthermore, abstract data types can be used to
compute automatically the system connectivity graph which could then be utilized,
for instance, to partition the system into smaller subsystems, perform index reduc-
tion for differential-algebraic equations, implement tearing algorithms, and many
other calculations.

We illustrate this abstract elementary algebra approach by developing a method
for sparse automatic Jacobian generation, which is superior to other available meth-
ods when applied to systems engineering problems. We show that our method allows
for model reconfiguration at runtime and overall better code reuse in scientific ap-
plications. Moreover, we show that our approach enables the automatic generation
of the dependency graph of a system. The method is straightforward to parallelize
in a distributed memory environment.

A similar approach is used in Sacado [19], an automatic differentiation package
which is part of the Trilinos library [9]. However, Sacado does not support sparse
derivatives – it allocates memory for derivatives with respect to all system variables.
For many partial differential equation (PDE) models this is not a significant limi-
tation since the sparsity pattern typically consists of locally dense cells and dense

918 S. PELEŠ AND S. KLUS

derivatives can be computed for each cell separately. Automatic differentiation also
can be incorporated directly in the mesh generation (e.g. as in [22]), therefore us-
ing sparsity information from the mesh itself. On the other hand, components in
system engineering applications are often large with locally sparse structures that
can be exploited by using sparse automatic differentiation.

The automatic differentiation library ADOL-C [24] provides sparse capability
and has drivers for computing Jacobian and Hessian matrices. However, ADOL-C
does not define abstract elementary algebra, but uses operator overloading only
locally to compute derivatives. Such approach requires ADOL-C specific code in
the model, and is not easily extensible. Furthermore, ADOL-C does not support
distributed memory parallelization.

The paper is organized as follows: In Section 2 we provide the mathematical
formulation of the elementary algebra we use for sparse automatic differentiation.
We describe the prototype C++ implementation in Section 3. Preliminary bench-
marking results showing linear scaling of the computational cost are presented in
Section 4. Future research directions are discussed in Section 5.

2. Mathematical Formulation of Sparse Automatic Differentiation

2.1. Problem Description. In addition to the system of nonlinear equations or
differential-algebraic equations, given by

(1) f(x; p) = 0 or F (t, x, ẋ; p) = 0,

respectively, most numerical libraries for the solution and optimization of such
systems require the user to provide also the Jacobian and the sparsity pattern of
the system. Here, x is the vector of variables and p the vector of parameters. The
Jacobian J is then defined as the matrix

(2) J =
∂f

∂x
or J = α

∂F

∂ẋ
+

∂F

∂x
,

where the parameter α is related to the numerical integration scheme used for the
simulation and provided by the solver. There are several different ways to compute
the Jacobian:

• Compute and implement analytical Jacobian manually. While this will lead to the
fastest numerical computations, it is often not feasible or extremely cumbersome
to compute Jacobians manually for large systems.

• Compute Jacobian numerically. The derivatives can be computed using finite
difference approximations. This approach is relatively easy to implement, but it
is in general neither accurate nor efficient.

• Use compiler automatic differentiation. This approach requires equation syntax
parsing capabilities. For large systems, parsing the equations can be quite time
consuming. Parallelizing these methods could be quite challenging, as well.

• Use operator overloading automatic differentiation. In this approach, all deriva-
tives are computed automatically at the same time when the model equations
are evaluated. This approach requires minimal involvement from the component
model developer.

Another requirement is often to be able to reuse model equations in cases where
some of the parameters pi are set as variables and some of the variables xi are “fixed”
to constant values. Each of those cases would require different Jacobians. This
complicates implementing the first and third approach for such systems significantly.

For most engineering problems, the governing equations are sparsely coupled.
Thus, only a small fraction of the entries of the Jacobian will be nonzero. There

ABSTRACT ELEMENTARY ALGEBRA 919

are a number of different algorithms for solving linear systems that take advantage
of the system sparsity to speed up computations [13, 7]. To use those algorithms,
however, one also needs to find the sparsity pattern.

Example 2.1. Assume we are trying to find a steady state solution for a Lorenz
system [14]. The residual equations (1) can be written as

σ(y − x) = 0,

x(ρ− z)− y = 0,

xy − βz = 0,

(3)

where x, y, and z are variables and σ, ρ, and β are constant parameters. The
Jacobian (2) is then given by

(4) J =

 −σ σ 0
ρ− z −1 −x
y x −β

 .

Here, J13 ≡ 0, while all the other entries have nonzero values, generally. The
sparsity pattern for the Lorenz system is then

(5)

• •
• • •
• • •

 .

This tells the solver it does not need to allocate memory for J13 and perform
computations with it. △

Developing an efficient way for computing the sparsity pattern of the Jacobian
is the key enabling technology for solving large-scale nonlinear systems, ordinary
differential equations, differential-algebraic equations, and optimization problems.
Since all of the information required to compute the Jacobian is contained within
the model equations, the computation of the Jacobian and its sparsity pattern can
be fully automated.

2.2. Automatic Structure Analysis. For better clarity, let us first discuss the
sparsity pattern generation alone. The sparsity pattern is required by the numerical
solver at the initialization stage to allocate objects required for sparse linear algebra
algorithms. During computations, the sparsity pattern (i.e. connectivity structure)
is used by the linear solver to identify structurally nonzero elements of the Jacobian
that enter the computation.

The system connectivity information can be used for a number of other analyses
such as index reduction for differential-algebraic equations (DAEs), partitioning,
model causalization, tearing, numerical diagnostics, and many others. These are,
however, beyond the scope of this paper and will be only briefly described in Sub-
section 2.4.

The approach we propose is to compute the dependencies of the residual equa-
tions on the fly along with the residual values. To do that, we define a mathematical
object Y which is a set containing a real number y and set D, which contains in-
teger labels of all dependencies of y. Labels are independent variable identifiers;
typically, they are offset values in the solution vector as returned by the solver. We
denote this object as

(6) Y = {y,Dy}.
For any independent variable x, the corresponding dependency tracking object is

(7) X = {x, {nx}},

920 S. PELEŠ AND S. KLUS

that is, each independent variable has only trivial self-dependency. Algebraic op-
erations on Y, the set of all Y, are defined as follows:

• For any C ∈ R and Y ∈ Y and algebraic operation ∗, it is

(8) C ∗ Y = {C ∗ y, Dy}.

• For any two Y, Z ∈ Y and mathematical operation ∗, it is

(9) Y ∗ Z = {y ∗ z, Dy ∪ Dz}.

• For any function h(y) defined on R, there is a corresponding function h(Y) defined
on Y such that

(10) h(Y) = {h(y), Dy},

where Dy is the set of dependencies of Y.

Comparisons between elements of Y are performed with respect to values only,
disregarding dependencies. For example:

(11) Y1 > Y2 ⇔ y1 > y2.

If we define residual equations on Y, rather than R, the residual computation will
give us both, the residual value and the sparsity pattern.

Example 2.2. Let us consider again the Lorenz system introduced in Example 2.1.
The first residual is computed as

F1 = σ ({x, {nx}} − {y, {ny}})
= σ{x− y, {nx} ∪ {ny}}
= {σ(x− y), {nx, ny}},

(12)

and similarly we get

F2 = {x(ρ− z)− y, {nx, ny, nz}},(13)

F3 = {xy − βz, {nx, ny, nz}}.(14)

From the dependencies in (12–14), one can obtain the sparsity pattern (5) by setting
nx = 1, ny = 2, and nz = 3. Note that this approach for obtaining the sparsity
pattern is independent of how equations are written. If we, for example, write the
third residual in (3) as

(15) f3 = u− βz,

where u = xy, then the residual evaluation using dependency tracking variables
gives us

F3 = {u,Du} − β{z, {nz}}
= {xy, {nx} ∪ {ny}} − {βz, {nz}}
= {xy − βz, {nx, ny} ∪ {nz}}
= {xy − βz, {nx, ny, nz}},

(16)

which is the same as (14). △

This property is particularly convenient when coding residual equations because
it allows reordering computations and using as many intermediate dependent vari-
ables as necessary. Note that all derivatives in the equations are uniquely defined
in terms of derivatives with respect to independent variables, only.

ABSTRACT ELEMENTARY ALGEBRA 921

2.3. Automatic Differentiation. To perform sparse automatic differentiation
we make a small extension to the object we used for the sparsity pattern computa-
tion. We define Ỹ as a set of all

(17) Ỹ = {y, {(n, ∂ny) : n ∈ Dy}},
where y and Dy are the same as in (6). Essentially, we mapped to each dependency
the value of the partial derivative with respect to that dependency. For independent
variables

(18) X̃ = {x, {(nx, 1)}}.

Algebraic operations on Ỹ are defined in a similar fashion as in the dependency
tracking case:

• For any C ∈ R, Ỹ ∈ Ỹ and algebraic operation ∗ defined on Ỹ, it is
(19) C ∗ Ỹ = {C ∗ y, {(n, ∂n(C ∗ y)) : n ∈ Dy}}.

• For any two Ỹ, Z̃ ∈ Ỹ and algebraic operation ∗ defined on Ỹ, it is
(20) Ỹ ∗ Z̃ = {y ∗ z, {(n, ∂n(y ∗ z)) : n ∈ Dy ∪ Dz}}.

• For any function h(x) defined on R, there is a corresponding function h(Ỹ) defined

on Ỹ such that

(21) h(Ỹ) = {h(y), {(n, h′(y)∂ny) : n ∈ Dy}},

where Dy is the set of dependencies of Ỹ.

Comparisons between elements of Ỹ are defined in the same way as for the depen-
dency tracking data type.

Example 2.3. Let us compute the Jacobian for residual (15). Using the auto-
matic differentiation data type defined in (17), and the algebra defined for it, this
computation is carried out as

F3 = {u, {(nx, ∂xu), (ny, ∂yu)}} − β{z, {(nz, 1)}}
= {xy, {(nx, y), (ny, x)}} − {βz, {(nz, β)}}
= {xy − βz, {(nx, y), (ny, x), (nz,−β)}}.

The derivatives in F3 make up the third row of the Jacobian (4), when nx = 1,
ny = 2, and nz = 3. △

2.4. Further Applications. Analogously, the structure of a given system can be
represented as a bipartite graph, where the bipartite sets of vertices are the equa-
tions and variables, respectively. Equation fi is then by definition connected to
variable xj if and only if Jij ̸≡ 0. The dependency graph of the Lorenz system (3)
is shown in Figure 1a. These dependency graphs are typically used for symbolic
transformations such as causalization and tearing of model equations. The causal-
ization selects the order in which equations are solved, so that system can be solved
gradually, piece by piece. Tearing is typically used in conjunction with causaliza-
tion to break dependency loops. These methods are described in detail in [3], for
example. With our data type, the dependency graph is automatically generated
during the model evaluation and these methods can be implemented without source
code transformation tools.

The dependency graph could also be used to decompose a high-dimensional
system into smaller subsystems. With the aid of graph partitioning tools, it would
be possible to break the system into smaller clusters that are strongly connected
internally, but only weakly connected to the other clusters. In this way, assigning

922 S. PELEŠ AND S. KLUS

a)

f1 bc

bc

bc

bc

bc

bc

f2

f3

x1

x2

x3

b)

f1 bc

bc bc

bc

f2

f3

x1

x2

x3

f4 bc

bc bc

bc

f5

f6

x4

x5

x6























































S1























































S2

bc

bc

bc

bc

Figure 1. a) Dependency graph of the Lorenz system. b) Parti-
tioning of two coupled Lorenz systems using the dependency graph.
Only the edge marked in red needs to be shared by the two cores.

different clusters or subsystems to different processing cores, the communication
between cores – which is often a bottleneck during the parallel simulation of such
systems – could be minimized without domain knowledge simply by using a data
type that tracks the dependencies. An illustration of this approach is shown in
Figure 1b, where two coupled Lorenz systems are split into subsystems S1 and S2.
Here, only variable x3 is required by both subsystems and needs to be shared by
the two cores if the system is solved in parallel. Note that subsystem S1 can be
evaluated independently whereas S2 depends on S1. This can also be regarded as
a block causalization of the system.

3. Prototype Implementation

Dependency tracking objects like (6) or (17) can be seamlessly implemented
in any programming language that supports operator overloading. We created a
preliminary implementation in C++ mainly for prototyping and testing purposes.
Here, we outline the details of this implementation.

We create a class Variable that stores the double precision value and the de-
pendency map related to that value. The class overloads all operators defined for
the double data type. The prototype implementation is structured like this:

class Variable

{

public:

Variable ();

explicit Variable(double value);

Variable(double value , size_t variableID);

Variable(const Variable& v);

∼Variable ();

// =

Variable& operator =(const double& rhs);

Variable& operator =(const Variable& rhs);

// +=

Variable& operator +=(const double& rhs);

Variable& operator +=(const Variable& rhs);

// *=

Variable& operator *=(const double& rhs);

Variable& operator *=(const Variable& rhs);

ABSTRACT ELEMENTARY ALGEBRA 923

// ...

typedef std::map <size_t , double > DependencyMap;

private:

double value_;

size_t variableID_;

bool isFixed_;

mutable DependencyMap* dependencies_;

};

This class has several constructors. The constructor that creates Variable from
double data type is made explicit to prevent a possible loss of derivatives in ac-
cidental implicit data conversions. In addition to the value and the identifier of
the variable, the object has a boolean flag isFixed_. This flag is used when the
designation of the object needs to change from a variable to a constant parameter.
The dependency map in this implementation is just a standard map between the
variable identifiers and the values of the derivatives with respect to those variables.
Only independent (state) variables have assigned identifiers. The identifiers typi-
cally correspond to global vector indices. Dependent or temporary variables would
obtain their dependency map directly or indirectly from state variables. For exam-
ple x, y, and z in equation (15) would have identifiers set to 1, 2, and 3, respectively,
but u would not have an identifier.

All arithmetic operators are overloaded for Variable data type to implement
(20) and combinations of Variable and double types to implement (19). Arith-
metic operators are implemented in terms of compound assignment operators. For
example, here is how *= operator overloading is implemented for the Variable class:

Variable& Variable :: operator *=(const Variable& rhs)

{

// derivation by parts of @ *this

scaleDependencies(rhs.value_);

// compute partial derivatives of rhs and add them to *this

for(auto& p : *(rhs.dependencies_))

(* dependencies_)[p->first] += (p->second * value_);

// compute value of *this

value_ *= rhs.value_;

return *this;

}

Here, we compute the derivative (lhs · rhs)′ = (lhs)′ · rhs+ lhs · (rhs)′, where lhs
is pointed to by this. The derivatives of lhs are first scaled by the value of rhs
to obtain the first term in the expression for the derivative of the product. Then
each rhs derivative is multiplied by the value of lhs and added to corresponding
derivatives of lhs. If the corresponding derivative of lhs does not exist, a new entry
is added to the dependency map. The value is computed at the end, because it is
used in the derivative of the product expression.

The multiplication operator is then implemented as a non-member operator

const Variable operator *(const Variable& lhs , const Variable& rhs)

{

return Variable(lhs) *= rhs;

}

The copy constructor with lhs as the argument is used to create the variable to be
returned and then the *= operator is used to multiply that variable by rhs.

924 S. PELEŠ AND S. KLUS

In addition to overloading operators, all mathematical functions from the stan-
dard C++ library operating on double data type have to be overloaded, as well.
Take for example the sine function whose derivative is (sinx)′ = cosx · x′:

namespace std

{

inline Variable sin(const Variable& x)

{

double val = sin(x.getValue ());

double der = sin_derivative(x.getValue ());

Variable res(x); // copy derivatives of x

res.setValue(val); // set function value f(x)

res.scaleDependencies(der); // compute derivatives of f(x)

return res;

}

}

In the namespace std we define an inline function that takes a Variable data type
as the input. We use the copy constructor to retain all derivatives of x, and then
we multiply them by cosx per chain rule. The value of the sine is computed using
the sine function from the standard C++ library. The function that computes the
derivative of the sine is defined in the same namespace as the Variable type:

inline double sin_derivative(double x)

{

return std::cos(x);

}

The same approach is used for other functions.

Example 3.1. A simple use of the Variable class is shown in the following code:

template <typename T>

void residualFunction(vector <T>& f,

const vector <T>& x,

const vector <T>& p)

{

const T y = x[0]*x[1];

f[0] = p[0]*(x[1] - x[0]); // sigma *(y - x)

f[1] = x[0]*(p[1] - x[2]) - x[1]; // x*(rho - z) - y

f[2] = y - p[2]*x[2]; // x*y - beta*z

}

int main()

{

const size_t n = 3;

vector <Variable > x(n), p(n), f(n);

// initialize independent variables

x[0] = 8.0; x[1] = 20.0; x[2] = 2.0/3.0;

// set constant parameter values

p[0] = 10.0; p[1] = 8.0/3.0; p[2] = 28.0;

// decide x, y, and z are variables ...

for (size_t i = 0; i < n; ++i)

x[i]. setVariableNumber(i);

// ... and sigma , rho , and beta are constant parameters

for (size_t i = 0; i < n; ++i)

p[i]. setFixed(true);

residualFunction(f, x, p);

printIncidenceMatrix(f);

printJacobian(f);

}

ABSTRACT ELEMENTARY ALGEBRA 925

The function residualFunction computes the residual for the steady state solution
of the Lorenz system. The dependent variable y is not really needed in this exam-
ple other than to illustrate how the derivative calculation is propagated through
variables. It is important to note that the Lorenz model in this implementation
does not depend on a specific data type. Furthermore, the model does not assume
what are independent variables and what are system parameters. This is deter-
mined outside the model. In this example, elements of the vector x are set to be
independent variables and elements of the vector p constant parameters in the main
function. This is consistent with the problem defined in (3) where we look for a
steady state solution given parameters σ, ρ and β. One residual evaluation with
the Variable data type also computes the sparsity pattern and the Jacobian. The
function printIncidenceMatrix outputs the sparsity pattern:

A = [1 1 0;

1 1 1;

1 1 1];

The function printJacobian outputs:

J = [-10 10 0;

2 -1 -8;

20 8 -28]; △

Postprocessing of this output may help, for instance, detect (structurally) sin-
gular or ill-conditioned Jacobians. For simplicity, we omit the implementation of
the two output functions. Note that in this example the parameters p could be
declared as double instead of Variable, thus getting rid of a small overhead when
calling p. In that case, however, we would need to modify residualFunction code
if we wanted to change parameter and variable designation as in the next example.

Example 3.2. The Variable data type allows us to change parameter and variable
designations at runtime, so we can designate elements of the vector p as system
variables and elements of the vector x as constant system parameters. All one has
to do is to set:

// decide x, y, and z are constant parameters ...

for (size_t i = 0; i < n; ++i)

x[i]. setFixed(true);

// ... and sigma , rho , and beta are variables

for (size_t i = 0; i < n; ++i)

p[i]. setVariableNumber(i);

In this problem we look for parameters σ, ρ, and β such that a fixed point solution
of (3) is at x = 8, y = 20, and z = 2/3. The sparsity pattern and Jacobian of the
system in that case are obtained as

A = [1 0 0;

0 1 0;

0 0 1];

and

J = [12 0 0;

0 8 0;

0 0 -0.667];

respectively. This change can be made at runtime without the need to recompile
the system model. Any other selection of system parameters and variables can be
made in the same way. The vectors x and p are used merely to denote nominal
system variables and parameters. △

926 S. PELEŠ AND S. KLUS

Typically, one would run the residual evaluation with dependency tracking dur-
ing the solver initialization phase to get the sparsity pattern, and then run the
residual evaluation with derivative calculation every time the Jacobian is required
during solver iterations. Note that the residual vector in this case is in fact an im-
plementation of a compressed row sparse matrix. The only difference is that each
row, in addition to matrix elements, also holds a corresponding residual vector
element.

4. Preliminary Benchmarking Results

Our approach provides model developers with an intuitive interface, simplifies
porting of legacy codes, allows for model equations to be modified at runtime and
is straightforward to parallelize. The trade-off is that allocating variables in local
scope is expensive and adds significant new overhead to the computation. For our
approach to be feasible, the overhead has to be manageable and scale well with the
size of the system. To provide a preliminary assessment of how the computational
cost scales with the size of the model (i.e. number of equations), we perform several
numerical experiments. For the purpose of this assessment, we treat all variables
(including residuals) as local scope variables and reallocate derivatives each time
they are computed.

Figure 2. Benchmarking test case: A simple electrical grid model.

As a benchmark problem, we select a simple microgrid model as shown in Fig-
ure 2. A single alternating current (AC) generator is connected to a rectifier that
converts power to direct current (DC) and supplies it to a DC bus. Several passive
AC loads are connected to the DC bus, each through a separate inverter that con-
verts DC power from the bus to 60Hz AC power required by the load. The size of
this system can be easily scaled up by simply adding more loads to the bus. The
system parameters are set so that the simulation results are “self-validating” – the
voltage at each load is the same as the voltage produced by the generator: 100V,
60Hz sinusoidal. A more detailed description of the test case is given in Appendix
A.

The electrical grid model is cast in form of differential-algebraic equations. We
simulate the first 0.1 s of the grid operation using the Rythmos package from the

ABSTRACT ELEMENTARY ALGEBRA 927

Trilinos library. We use an implicit variable-order variable-stepsize backward differ-
entiation method to solve the equations [10]. The solutions of the resulting systems
of nonlinear equations are obtained using a sparse direct method. The method
requires the residual equations and the Jacobian of the system to be provided. We
measure the overall computation time and model evaluation time. In our case, a
model evaluation is a residual evaluation using the Variable data type. The Jaco-
bian is evaluated automatically together with the residual at each model evaluation
call per design of the Variable class.

The unknown variables x in our case are typically node voltages. An example of
the Jacobian sparsity pattern for the benchmarking test case is shown in Figure 3.

Figure 3. Sparsity pattern for the grid model with 30 loads. Only
1.8% of Jacobian elements are structurally nonzero.

In the serial case, we ran simulations for grids with 100–600 loads. For these
simulations it takes roughly 8,000 integrator steps and 50,000–60,000 function eval-
uations to complete regardless of the size of the system. We find that the average
computational time per call grows linearly with the size of the system as shown
in Figure 4. Data points for the computational cost of the function evaluation fit
particularly well to the linear model.

We compare the average cost of the function evaluation for our sparse automatic
differentiation prototype with dense automatic differentiation using the Sacado
package from the Trilinos library. The prototype uses the class map from the stan-
dard C++ library (O(log n) cost), whereas Sacado uses a dense vector (O(1) cost)
to store and access derivatives. We use our method to compute sparsity pattern
information and provide it to Sacado, so that only structurally nonzero derivatives
are computed. For systems of this size, it was expected that the dense algorithm
would outperform the sparse automatic differentiation. Both algorithms evaluate
the same derivatives and the dense approach has faster access to derivatives. The
only downside of the dense approach is that it has to allocate larger chunks of
memory to store derivatives. Yet, our results suggest that memory management
alone may cause the computational cost to grow quadratically with the size of the
system when using dense automatic differentiation (Figure 5).

Parallelizing simulations that use sparse automatic differentiation to compute the
Jacobian is fairly straightforward in the MPI framework when using our approach.

928 S. PELEŠ AND S. KLUS

Figure 4. Wall time for the overall computation and the model
evaluation only.

Figure 5. Function evaluation cost when using sparse and dense
automatic differentiation.

For testing purposes, we implemented a simple parallelization scheme where the
generator and the rectifier are simulated on one node and the simulations of in-
verters and loads are evenly distributed over the remaining nodes. We show here
results of an MPI simulation on 16 CPU cores (4 nodes). The number of loads in
the system was varied from 1,000–4,000 (roughly 10,000–30,000 equations). The
results show again linear scaling as the size of the system increases as shown in
Figure 6. Sacado eventually uses up all the memory on the compute node in this
case and simulation crashes.

5. Conclusion

Our analysis and benchmarking results suggest that using the proposed abstract
elementary algebra approach for sparse automatic differentiation is a promising
direction. The linear scaling of the computational costs and the ease of paral-
lelization indicate that this approach is particularly suitable for massively parallel
computations.

ABSTRACT ELEMENTARY ALGEBRA 929

Figure 6. Computational time per call for integration step and
function evaluation.

The prototype implementation leaves room for code optimization. The residual
vector implemented in terms of the Variable data type is de facto a compressed
row sparse Jacobian with the extension that each row is associated with the corre-
sponding residual value. At this time we have not implemented an option to switch
off Jacobian computation when the solver does not need it. Intermediate variables,
such as u in (15), can be understood as sparse matrix rows, as well. However,
they are not part of the Jacobian, they are used just to complete the chain rule.
Typically, intermediate variables are used by system modelers for convenience to
write model equations in a more compact form. In the current implementation,
derivatives of residual functions are reallocated at every function evaluation based
on the dependency tracking mechanism. Since this information does not change
during solver iterations, the dependency structure of the system could be precom-
puted once and then reused at subsequent solver iterations. This could be done
easily for residual vectors, which are typically passed by reference to models. Inter-
mediate variables are typically local variables used by the modeler to simplify the
equations, so they may have to be reallocated at every iteration anyway. The code
optimization and more thorough performance testing will be done in a subsequent
work.

When simulating our test cases, we had to copy the residual values from the vec-
tor of variables to the Epetra vector and the Jacobian derivatives to a compressed-
row sparse matrix provided by Epetra, per requirements of the Rythmos solver.
This added a small additional overhead to the computation. The full power of
the proposed approach could be demonstrated with numerical solvers that do not
require specific data formats, but instead provide abstract interfaces to all linear
and elementary algebra operations. While such solvers are still not part of the
mainstream, a lot of activities have been done in that direction as for example in
Tpetra project [1].

Using abstract elementary algebra has potential applications way beyond auto-
matic differentiation. As we have shown in this paper, it could be used for recon-
figuring models at runtime; constant parameters could be changed into variables
and vice versa. Abstract data types also could be used for diagnostics, for example
to identify structurally singular Jacobians. Furthermore, this approach could be

930 S. PELEŠ AND S. KLUS

used for preprocessing model equations for index reduction of differential-algebraic
equations or tearing algorithms for system decomposition.

Abstract elementary algebra can also help reuse existing code. The same model
code can be reused for local sensitivity analysis or embedded uncertainty quantifi-
cation, simply by using different template parameters. The same holds true for
solvers that provide abstract interfaces for elementary algebra. More reuse stream-
lines code verification and improves development efficiency, which are critical for
any large scale computation. All of these will be pursued in subsequent work.

Acknowledgments

The authors would like to thank Eric Phipps of Sandia National Laboratories
for his helpful suggestions and productive discussions. Warm thanks go to Teems
Lovett of United Technologies Research Center for a number of helpful discussions
and proofreading of the final draft.

References

[1] Christopher G. Baker and Michael A. Heroux. Tpetra, and the use of generic programming
in scientific computing. Scientific Programming, 20(2):115–128, 2012.

[2] Christian Bischof, Lucas Roh, and Andrew Mauer-Oats. ADIC: an extensible automatic
differentiation tool for ANSI-C. Urbana, 51:61802, 1997.

[3] François E. Cellier and Ernesto Kofman. Continuous System Simulation. Springer, 2006.
[4] Paul G Constantine, Eric T Phipps, and Timothy M Wildey. Efficient uncertainty propa-

gation for network multiphysics systems. International Journal for Numerical Methods in
Engineering, 99(3):183–202, 2014.

[5] Drury B Crawley, Jon W Hand, Michaël Kummert, and Brent T Griffith. Contrasting the
capabilities of building energy performance simulation programs. Building and environment,

43(4):661–673, 2008.
[6] Dassault Systémes AB, SE-223 63 Lund Sweden. Dymola Dynamic Modeling Laboratory,

2015.

[7] Timothy A. Davis and Ekanathan Palamadai Natarajan. Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems. ACM Transactions on Mathematical Software,
37(3):36:1–36:17, 2010.

[8] Robert W. Erickson and Dragan Maksimovic. Fundamentals of power electronics. Springer

Science & Business Media, 2001.
[9] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu,

Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps,
Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan

Williams, and Kendall S. Stanley. An overview of the Trilinos project. ACM Transactions
on Mathematical Software, 31(3):397–423, 2005.

[10] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E.
Shumaker, and Carol S. Woodward. Sundials: Suite of nonlinear and differential/algebraic

equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3):363–396,
2005.

[11] Kamiar J Karimi and Alvin C Mong. Modeling nonlinear loads for aerospace power systems.
In Energy Conversion Engineering Conference, 2002. IECEC’02. 2002 37th Intersociety,

pages 33–38. IEEE, 2004.
[12] Yu-Min Lee and Charlie Chung-Ping Chen. Power grid transient simulation in linear

time based on transmission-line-modeling alternating-direction-implicit method. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 21(11):1343–1352,
2002.

[13] Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software, 31(3):302–325, 2005.

[14] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,
20(2):130–141, 1963.

[15] Maplesoft. MapleSim. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario,
Canada, 2015.

ABSTRACT ELEMENTARY ALGEBRA 931

[16] Mathworks. Matlab and Simscape Release 2015b. The MathWorks, Inc., Natick, Mas-
sachusetts, United States, 2015.

[17] Min Oh and Costas C. Pantelides. A modelling and simulation language for combined lumped
and distributed parameter systems. Computers & Chemical Engineering, 20(6):611–633,

1996.
[18] Hans Olsson, Hilding Elmqvist, and Martin Otter. Modelica – A unified object-oriented

language for system modeling. Technical report, Modelica Association, 2012.

[19] Eric Phipps and Roger Pawlowski. Efficient expression templates for operator overloading-
based automatic differentiation. In Recent Advances in Algorithmic Differentiation, pages
309–319. Springer, 2012.

[20] Process Systems Enterprise. gPROMS, 1997-2015.

[21] Ricardo Riaza. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications.
World Scientific, 2008.

[22] Joachim Schöberl. C++ 11 implementation of finite elements in NGSolve. Technical Report
ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of

Technology, 2014.
[23] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch.

OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran codes.
ACM Transactions on Mathematical Software, 34(4):18–36, 2008.

[24] Andrea Walther and Andreas Griewank. Getting started with ADOL-C. Combinatorial
Scientific Computing, pages 181–202, 2012.

[25] Michael Wetter. Modelica-based modelling and simulation to support research and develop-
ment in building energy and control systems. Journal of Building Performance Simulation,

2(2):143–161, 2009.
[26] Wolfram Research, Inc., Champaign, Illinois, United States. SystemModeler, 4.2 edition,

2015.

[27] Tsai-Fu Wu, Serhiy V Bozhko, Greg M Asher, and DW Thomas. Fast functional modelling
of the aircraft power system including line fault scenarios. In Power Electronics, Machines
and Drives (PEMD 2010), 5th IET International Conference on, pages 1–7. IET, 2010.

Appendix A. Test Case Description

Electrical grids are a common motif in power systems. An example of such a
grid is shown in Figure 2. Since mathematical modeling methods for power systems
are not commonly known outside the electrical engineering community, we provide
here a brief overview of the governing equations used in our test case. For a detailed
description of the component models, we refer the reader to, for example, [8] and
references therein. The equations are derived and the system is composed using
the modified nodal analysis approach [21].

We assume that the generator shown on the left side in Figure 2 is an ideal
3-phase generator with residual equations for the generator terminals a, b, and c
given by:

0 = vga − V0 sin(ωt),(A.1)

0 = vgb − V0 sin(ωt+ 2π/3),(A.2)

0 = vgc − V0 sin(ωt+ 4π/3).(A.3)

The generator is connected to a rectifier, which converts the 3-phase AC power
to DC power. Rectifier and filter schematics are shown in Figure 7. Kirchhoff’s
current law for the rectifier can be cast in terms of residual equations as

0 = iga − ID(vga − vf) + ID(vn − vga),(A.4)

0 = igb − ID(vgb − vf) + ID(vn − vgb),(A.5)

0 = igc − ID(vgc − vf) + ID(vn − vgc).(A.6)

932 S. PELEŠ AND S. KLUS

Figure 7. Schematic of the rectifier model.

Here, iga, igb, and igc are generator phase currents entering the rectifier nodes a,
b, and c; vf is the voltage at node f (rectifier’s positive terminal, connected to the
filter) and vn is the node voltage at rectifier’s negative terminal.

The current through diodes ID(v) in the rectifier is modeled as

ID(v) = Is

[
exp

(v

nkT

)
− 1

]
.

In our simulations, we chose the temperature T = 300K, ideality factor n = 2, and
saturation current to be Is = 18.8 nA. Boltzmann constant k ≈ 1.38× 10−23 J/K.
The voltage v in the diode current function is the difference between node voltages
at the anode and cathode terminals of the diode.

The residual equations for the filter can be written as

0 = ID(vga − vf) + ID(vgb − vf) + ID(vgc − vf)− iL,(A.7)

0 = ϕL − LiL,(A.8)

0 = ϕ̇L − (vf − vp),(A.9)

0 = qC − C(vp − vn),(A.10)

where iL and ϕL are inductor’s current and flux, respectively, L is the inductance,
qC is charge on the capacitor, C is the capacitance, and vp is the voltage at the
positive terminal of the DC bus.

Kirchhoff’s current law gives the following equations for the DC bus (Figure 2):

0 = − q̇C + iL

+
∑
k

Gk

(
d(k)a (t)v(k)a + d

(k)
b (t)v

(k)
b + d(k)c (t)v(k)c

)
,(A.11)

0 = ID(vn − vga) + ID(vn − vgb) + ID(vn − vgc)

+
∑
k

(
i(k)a + i

(k)
b + i(k)c

)
,(A.12)

where v
(k)
α and i

(k)
α are α-phase of the voltage across and current through the load

k (α = a, b, c). The functions d
(k)
α (t) are inverter modulation signals that describe

3-phase AC waveforms at the inverter outlet. We choose the modulation signals to
be the same for all inverters and produce the sinusoidal output:

d(k)a (t) = m sin(ωt),

d
(k)
b (t) = m sin(ωt+ 2π/3),

d(k)c (t) = m sin(ωt+ 4π/3).

ABSTRACT ELEMENTARY ALGEBRA 933

Here, we set ω to be the same as the frequency of the generator. Furthermore, we
set

m =
2π

3
√
3
,

so that the voltage amplitude at each load is the same as the generator voltage
amplitude. This choice was made merely for model verification convenience (again,
interested readers are referred to [8] for more details).

Figure 8. Schematic of the inverter model with averaged pulse
width modulation.

The inverter model we used is an averaged model without details of pulse width
modulation. The equivalent circuit model of such an inverter model is shown in
Figure 8. The model consists of three ideal current-controlled current sources and
three ideal voltage-controlled voltage sources (one for each phase). The current
sources are controlled by the load currents as

iα = dα(t)ilα, α = a, b, c,

where ilα is the load current (Figure 8). Voltage sources are controlled by the DC
bus voltage as

vα =
1

2
d(k)α (t)(vp − vn), α = a, b, c.

Here, vp and vn are the node voltages on the positive and negative terminals of
the DC bus, respectively. By using Kirchhoff’s current law, the equations for the
inverter are obtained as

0 = i(k)va −Gk(v
(k)
a − v

(k)
0) + d(k)a (t)Gk(v

(k)
a − v

(k)
0),(A.13)

0 = i
(k)
vb −Gk(v

(k)
b − v

(k)
0) + d

(k)
b (t)Gk(v

(k)
b − v

(k)
0),(A.14)

0 = i(k)vc −Gk(v
(k)
c − v

(k)
0) + d(k)c (t)Gk(v

(k)
c − v

(k)
0),(A.15)

0 = Gk(v
(k)
a − v

(k)
0) +Gk(v

(k)
b − v

(k)
0) +Gk(v

(k)
c − v

(k)
0).(A.16)

Using Kirchhoff’s voltage law, we obtain equations for voltages at load terminals
vlα:

0 = v
(k)
la − vn − 1 + d

(k)
a (t)

2
(vp − vn),(A.17)

0 = v
(k)
lb − vn −

1 + d
(k)
b (t)

2
(vp − vn),(A.18)

0 = v
(k)
lc − vn − 1 + d

(k)
c (t)

2
(vp − vn).(A.19)

The entire system is described by residual equations (A.1–A.19). There are
12+7N system variables, where N is the number of AC loads connected to the bus.

934 S. PELEŠ AND S. KLUS

System variables are the generator node voltages vga, vgb, and vgc; the generator
currents iga, igb, and igc; the rectifier node voltage vf ; the positive and negative
voltages vp and vn of the DC bus; the internal filter variables – the inductor current
iL, the inductor flux ϕL, and the capacitor charge qC ; currents through ideal voltage

sources in the inverter model i
(k)
va , i

(k)
vb , and i

(k)
vc ; and load node voltages v

(k)
la , v

(k)
lb ,

v
(k)
lc , and v

(k)
l0 . Index k = 1, . . . , N denotes a load. In our tests, we set parameters

to the following values: Generator frequency ω = 2π60 rad/s, load conductances
are all equal and set to G = 0.01 S, capacitance in the filter is C = 0.1mF, and
inductance in the filter is L = 20mH.

United Technologies Research Center, East Hartford, CT 06108, (Present address: Lawrence
Livermore National Laboratory, Livermore, CA 94550 USA)

E-mail : peles2@llnl.gov

United Technologies Research Center, East Hartford, CT 06108, (Present address: Freie Uni-
versität Berlin, Department of Mathematics & Computer Science, Arnimallee 6, 14195 Berlin,

Germany.)
E-mail : stefan.klus@fu-berlin.de

