Volume 7, Issue 4
Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators

Abdessamad El Katit, Abdelrachid El Amrouss & Fouad Kissi

J. Nonl. Mod. Anal., 7 (2025), pp. 1416-1430.

Published online: 2025-07

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we are interested in some results of the existence of multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is based on variational method and critical point theory.

  • AMS Subject Headings

35J60, 35J70, 46E35

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-7-1416, author = {Katit , Abdessamad ElAmrouss , Abdelrachid El and Kissi , Fouad}, title = {Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2025}, volume = {7}, number = {4}, pages = {1416--1430}, abstract = {

In this paper, we are interested in some results of the existence of multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is based on variational method and critical point theory.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2025.1416}, url = {http://global-sci.org/intro/article_detail/jnma/24243.html} }
TY - JOUR T1 - Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators AU - Katit , Abdessamad El AU - Amrouss , Abdelrachid El AU - Kissi , Fouad JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 1416 EP - 1430 PY - 2025 DA - 2025/07 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1416 UR - https://global-sci.org/intro/article_detail/jnma/24243.html KW - Weighted variable exponent Lebesgue-Sobolev spaces, degenerated $(p(.), q(.))$-Biharmonic operator, Navier boundary problem. AB -

In this paper, we are interested in some results of the existence of multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is based on variational method and critical point theory.

Katit , Abdessamad ElAmrouss , Abdelrachid El and Kissi , Fouad. (2025). Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators. Journal of Nonlinear Modeling and Analysis. 7 (4). 1416-1430. doi:10.12150/jnma.2025.1416
Copy to clipboard
The citation has been copied to your clipboard