@Article{JNMA-7-1416,
author = {Katit , Abdessamad ElAmrouss , Abdelrachid El and Kissi , Fouad},
title = {Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators},
journal = {Journal of Nonlinear Modeling and Analysis},
year = {2025},
volume = {7},
number = {4},
pages = {1416--1430},
abstract = {
In this paper, we are interested in some results of the existence of
multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is
based on variational method and critical point theory.
},
issn = {2562-2862},
doi = {https://doi.org/10.12150/jnma.2025.1416},
url = {http://global-sci.org/intro/article_detail/jnma/24243.html}
}
TY - JOUR
T1 - Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators
AU - Katit , Abdessamad El
AU - Amrouss , Abdelrachid El
AU - Kissi , Fouad
JO - Journal of Nonlinear Modeling and Analysis
VL - 4
SP - 1416
EP - 1430
PY - 2025
DA - 2025/07
SN - 7
DO - http://doi.org/10.12150/jnma.2025.1416
UR - https://global-sci.org/intro/article_detail/jnma/24243.html
KW - Weighted variable exponent Lebesgue-Sobolev spaces, degenerated $(p(.), q(.))$-Biharmonic operator, Navier boundary problem.
AB -
In this paper, we are interested in some results of the existence of
multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is
based on variational method and critical point theory.
Katit , Abdessamad ElAmrouss , Abdelrachid El and Kissi , Fouad. (2025). Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators.
Journal of Nonlinear Modeling and Analysis. 7 (4).
1416-1430.
doi:10.12150/jnma.2025.1416
Copy to clipboard