Volume 7, Issue 4
Mild Solution for the Time Fractional Hall-Magneto-Hydrodynamics Stochastic Equations

Hassan Khaider, Achraf Azanzal & Abderrahmane Raji

J. Nonl. Mod. Anal., 7 (2025), pp. 1369-1382.

Published online: 2025-07

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we establish the existence and uniqueness of mild solutions for the time fractional hall-magneto-hydrodynamics stochastic equations with a fractional derivative of Caputo. Initially, we focus on the existence and uniqueness in the deterministe case. Using the Mittag-Leffler operators $\{\mathcal{Q}_α(−t^α \mathbb{J}): t ≥ 0\}$ and $\{\mathcal{Q}_{α,α}(−t^α \mathbb{J}) : t ≥ 0\}$ and applying the bilinear fixed-point theorem, we will prove the frist result. Next, by Itô integral, and by similair analogy we will establish the existence and uniqueness in the stochastic case in $\mathcal{EN}^{\mu}_a ∩ N^{2α}_{a,\mu}.$

  • AMS Subject Headings

35Q35, 35R11, 33E12

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-7-1369, author = {Khaider , HassanAzanzal , Achraf and Raji , Abderrahmane}, title = {Mild Solution for the Time Fractional Hall-Magneto-Hydrodynamics Stochastic Equations}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2025}, volume = {7}, number = {4}, pages = {1369--1382}, abstract = {

In this paper, we establish the existence and uniqueness of mild solutions for the time fractional hall-magneto-hydrodynamics stochastic equations with a fractional derivative of Caputo. Initially, we focus on the existence and uniqueness in the deterministe case. Using the Mittag-Leffler operators $\{\mathcal{Q}_α(−t^α \mathbb{J}): t ≥ 0\}$ and $\{\mathcal{Q}_{α,α}(−t^α \mathbb{J}) : t ≥ 0\}$ and applying the bilinear fixed-point theorem, we will prove the frist result. Next, by Itô integral, and by similair analogy we will establish the existence and uniqueness in the stochastic case in $\mathcal{EN}^{\mu}_a ∩ N^{2α}_{a,\mu}.$

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2025.1369}, url = {http://global-sci.org/intro/article_detail/jnma/24241.html} }
TY - JOUR T1 - Mild Solution for the Time Fractional Hall-Magneto-Hydrodynamics Stochastic Equations AU - Khaider , Hassan AU - Azanzal , Achraf AU - Raji , Abderrahmane JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 1369 EP - 1382 PY - 2025 DA - 2025/07 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1369 UR - https://global-sci.org/intro/article_detail/jnma/24241.html KW - Time fractional hall-magneto-hydrodynamics equations, Itô integral, derivative of Caputo, stochastic. AB -

In this paper, we establish the existence and uniqueness of mild solutions for the time fractional hall-magneto-hydrodynamics stochastic equations with a fractional derivative of Caputo. Initially, we focus on the existence and uniqueness in the deterministe case. Using the Mittag-Leffler operators $\{\mathcal{Q}_α(−t^α \mathbb{J}): t ≥ 0\}$ and $\{\mathcal{Q}_{α,α}(−t^α \mathbb{J}) : t ≥ 0\}$ and applying the bilinear fixed-point theorem, we will prove the frist result. Next, by Itô integral, and by similair analogy we will establish the existence and uniqueness in the stochastic case in $\mathcal{EN}^{\mu}_a ∩ N^{2α}_{a,\mu}.$

Khaider , HassanAzanzal , Achraf and Raji , Abderrahmane. (2025). Mild Solution for the Time Fractional Hall-Magneto-Hydrodynamics Stochastic Equations. Journal of Nonlinear Modeling and Analysis. 7 (4). 1369-1382. doi:10.12150/jnma.2025.1369
Copy to clipboard
The citation has been copied to your clipboard