arrow
Volume 1, Issue 2
Simpler Hybrid GMRES

J. Info. Comput. Sci. , 1 (2006), pp. 110-114.

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract
Hybrid GMRES algorithms are effective for solving large nonsymmetric linear systems. GMRES is  employed  at  the  first  phase  to  produce  iterative  polynomials,  which  will  be  used  at  the  second  phase  to implement the Richardson iteration. In the process of GMRES, a least squares problem needs to be solved which involves an upper Hessenberg factorization. Instead of using GMRES, we may use simpler GMRES. Correspondingly,  simpler  hybrid  GMRES  algorithms  are  formulated.  It  is  described  how  to  construct  the iterative polynomials from simpler GMRES. The new algorithms avoid the upper Hessenberg factorization so that  they  are  easier  to  program  and  require  a  less  amount  of  work.  Numerical  examples  are  conducted  to illustrate the good performance of the new algorithms.
  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-1-110, author = {}, title = {Simpler Hybrid GMRES}, journal = {Journal of Information and Computing Science}, year = {2006}, volume = {1}, number = {2}, pages = {110--114}, abstract = { Hybrid GMRES algorithms are effective for solving large nonsymmetric linear systems. GMRES is  employed  at  the  first  phase  to  produce  iterative  polynomials,  which  will  be  used  at  the  second  phase  to implement the Richardson iteration. In the process of GMRES, a least squares problem needs to be solved which involves an upper Hessenberg factorization. Instead of using GMRES, we may use simpler GMRES. Correspondingly,  simpler  hybrid  GMRES  algorithms  are  formulated.  It  is  described  how  to  construct  the iterative polynomials from simpler GMRES. The new algorithms avoid the upper Hessenberg factorization so that  they  are  easier  to  program  and  require  a  less  amount  of  work.  Numerical  examples  are  conducted  to illustrate the good performance of the new algorithms. }, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22850.html} }
TY - JOUR T1 - Simpler Hybrid GMRES AU - JO - Journal of Information and Computing Science VL - 2 SP - 110 EP - 114 PY - 2006 DA - 2006/04 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22850.html KW - AB - Hybrid GMRES algorithms are effective for solving large nonsymmetric linear systems. GMRES is  employed  at  the  first  phase  to  produce  iterative  polynomials,  which  will  be  used  at  the  second  phase  to implement the Richardson iteration. In the process of GMRES, a least squares problem needs to be solved which involves an upper Hessenberg factorization. Instead of using GMRES, we may use simpler GMRES. Correspondingly,  simpler  hybrid  GMRES  algorithms  are  formulated.  It  is  described  how  to  construct  the iterative polynomials from simpler GMRES. The new algorithms avoid the upper Hessenberg factorization so that  they  are  easier  to  program  and  require  a  less  amount  of  work.  Numerical  examples  are  conducted  to illustrate the good performance of the new algorithms.
. (2006). Simpler Hybrid GMRES. Journal of Information and Computing Science. 1 (2). 110-114. doi:
Copy to clipboard
The citation has been copied to your clipboard