- Journal Home
- Volume 19 - 2024
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Numerical Methods for Finding Multiple Solutions of a Superlinear Problem
J. Info. Comput. Sci. , 2 (2007), pp. 27-33.
[An open-access article; the PDF is free to any online user.]
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JICS-2-27,
author = {},
title = {Numerical Methods for Finding Multiple Solutions of a Superlinear Problem},
journal = {Journal of Information and Computing Science},
year = {2007},
volume = {2},
number = {1},
pages = {27--33},
abstract = { Using two numerical methods, we will obtain numerical positive solutions of the equation
u λ=∆−
is a
superlinear function of u . We study the behavior of the branches of numerical positive solutions for
varying
},
issn = {3080-180X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jics/22816.html}
}
TY - JOUR
T1 - Numerical Methods for Finding Multiple Solutions of a Superlinear Problem
AU -
JO - Journal of Information and Computing Science
VL - 1
SP - 27
EP - 33
PY - 2007
DA - 2007/03
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jics/22816.html
KW - Superlinear equation
KW - Multiple positive solutions
KW - Mountain pass Lemma
KW - sub and super-
solutions
AB - Using two numerical methods, we will obtain numerical positive solutions of the equation
u λ=∆−
is a
superlinear function of u . We study the behavior of the branches of numerical positive solutions for
varying
. (2007). Numerical Methods for Finding Multiple Solutions of a Superlinear Problem.
Journal of Information and Computing Science. 2 (1).
27-33.
doi:
Copy to clipboard