- Journal Home
- Volume 19 - 2024
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
The Nonclassical Symmetries and Group Invariant Solutions of the Boussinesq-Burgers Equation
J. Info. Comput. Sci. , 3 (2008), pp. 125-131.
[An open-access article; the PDF is free to any online user.]
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JICS-3-125,
author = {},
title = {The Nonclassical Symmetries and Group Invariant Solutions of the Boussinesq-Burgers Equation},
journal = {Journal of Information and Computing Science},
year = {2008},
volume = {3},
number = {2},
pages = {125--131},
abstract = { In this paper, we study the initial value problem of the Generalized KdV equation, define a
)3s ≥
.
nonlinear map
Therefore, the solution of the Generalized KdV equation with arbitrary precision on Turing machines can be
satisfied.
},
issn = {3080-180X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jics/22775.html}
}
TY - JOUR
T1 - The Nonclassical Symmetries and Group Invariant Solutions of the Boussinesq-Burgers Equation
AU -
JO - Journal of Information and Computing Science
VL - 2
SP - 125
EP - 131
PY - 2008
DA - 2008/06
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jics/22775.html
KW - Generalized KdV equation, Sobolev space, computability, Turing machines
AB - In this paper, we study the initial value problem of the Generalized KdV equation, define a
)3s ≥
.
nonlinear map
Therefore, the solution of the Generalized KdV equation with arbitrary precision on Turing machines can be
satisfied.
. (2008). The Nonclassical Symmetries and Group Invariant Solutions of the Boussinesq-Burgers Equation.
Journal of Information and Computing Science. 3 (2).
125-131.
doi:
Copy to clipboard