- Journal Home
- Volume 19 - 2024
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
T-Wise Balanced Designs from Binary Hamming Codes
J. Info. Comput. Sci. , 6 (2011), pp. 173-176.
[An open-access article; the PDF is free to any online user.]
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JICS-6-173,
author = {Manjusri Basu and Satya Bagchi},
title = {T-Wise Balanced Designs from Binary Hamming Codes},
journal = {Journal of Information and Computing Science},
year = {2011},
volume = {6},
number = {3},
pages = {173--176},
abstract = { In this paper we show that the binary Hamming codes $(2^r-1, 2^{2^r-r-1}-2, 3)$ satisfy $(2^r-r-2) -2^{2^r-r-1}-1, \{3,4,...,2^r-4\}, 1)$ designs, where $r\ge 3,$ a positive integer. For different
values of $r$ most of the $t$-wise balanced designs obtained from our constructions appear to be new.},
issn = {3080-180X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jics/22675.html}
}
TY - JOUR
T1 - T-Wise Balanced Designs from Binary Hamming Codes
AU - Manjusri Basu and Satya Bagchi
JO - Journal of Information and Computing Science
VL - 3
SP - 173
EP - 176
PY - 2011
DA - 2011/09
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jics/22675.html
KW -
AB - In this paper we show that the binary Hamming codes $(2^r-1, 2^{2^r-r-1}-2, 3)$ satisfy $(2^r-r-2) -2^{2^r-r-1}-1, \{3,4,...,2^r-4\}, 1)$ designs, where $r\ge 3,$ a positive integer. For different
values of $r$ most of the $t$-wise balanced designs obtained from our constructions appear to be new.
Manjusri Basu and Satya Bagchi. (2011). T-Wise Balanced Designs from Binary Hamming Codes.
Journal of Information and Computing Science. 6 (3).
173-176.
doi:
Copy to clipboard