arrow
Volume 13, Issue 1
Wavelet based numerical solution of linear and non-linear parabolic partial differential equations using Lifting scheme

S. C. Shiralashettia , L. M. Angadib and A. B. Deshi

J. Info. Comput. Sci. , 13 (2018), pp. 022-032.

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract
Partial  differential  equations  are  fundamental  in  modeling  several  natural  phenomena.  The present work is designed for the Wavelet based numerical solution of linear and non-linear parabolic partial differential  equations  using  lifting  scheme.  To  demonstrate the  efficiency  and  competence  of  the  proposed scheme, we used  both orthogonal  and  biorthogonal wavelets. This  scheme speeds up convergence  in  lesser computational time as compared with existing schemes. Some test problems are presented for the validity and applicability of the scheme.
  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-13-022, author = {S. C. Shiralashettia , L. M. Angadib and A. B. Deshi}, title = {Wavelet based numerical solution of linear and non-linear parabolic partial differential equations using Lifting scheme}, journal = {Journal of Information and Computing Science}, year = {2018}, volume = {13}, number = {1}, pages = {022--032}, abstract = { Partial  differential  equations  are  fundamental  in  modeling  several  natural  phenomena.  The present work is designed for the Wavelet based numerical solution of linear and non-linear parabolic partial differential  equations  using  lifting  scheme.  To  demonstrate the  efficiency  and  competence  of  the  proposed scheme, we used  both orthogonal  and  biorthogonal wavelets. This  scheme speeds up convergence  in  lesser computational time as compared with existing schemes. Some test problems are presented for the validity and applicability of the scheme. }, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22460.html} }
TY - JOUR T1 - Wavelet based numerical solution of linear and non-linear parabolic partial differential equations using Lifting scheme AU - S. C. Shiralashettia , L. M. Angadib and A. B. Deshi JO - Journal of Information and Computing Science VL - 1 SP - 022 EP - 032 PY - 2018 DA - 2018/03 SN - 13 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22460.html KW - AB - Partial  differential  equations  are  fundamental  in  modeling  several  natural  phenomena.  The present work is designed for the Wavelet based numerical solution of linear and non-linear parabolic partial differential  equations  using  lifting  scheme.  To  demonstrate the  efficiency  and  competence  of  the  proposed scheme, we used  both orthogonal  and  biorthogonal wavelets. This  scheme speeds up convergence  in  lesser computational time as compared with existing schemes. Some test problems are presented for the validity and applicability of the scheme.
S. C. Shiralashettia , L. M. Angadib and A. B. Deshi. (2018). Wavelet based numerical solution of linear and non-linear parabolic partial differential equations using Lifting scheme. Journal of Information and Computing Science. 13 (1). 022-032. doi:
Copy to clipboard
The citation has been copied to your clipboard