arrow
Volume 13, Issue 4
Confidence ellipsoids for the primary regression coefficients in m- equation seemingly unrelated regression models

Qingli Pan and Chuanlin Zhang

J. Info. Comput. Sci. , 13 (2018), pp. 269-282.

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract
For  a  m-equation  seemingly  unrelated  regression(SUR)  model,  this  paper  derives  two  basic confidence  ellipsoids(CEs)  respectively  based  on  the  two-stage  estimation  and  maximum  likelihood estimation(MLE), and corrects the two CEs using the Bartlett correction method, resulting in four new CEs. In  the  meantime  via  using  the  partition  matrix,  we  derive  a  new  matrix-derivative-based  formulation  of Fisher's information matrix for calculating the maximum likelihood estimator of the m-equation SUR model. By  Monte  Carlo  simulation,  the  coverage  probabilities  and  average  volumetric  characteristics  of  CEs  are compared under different sample values and different correlation coefficients. Moreover, it is proved that the CE based on the second bartlett correction method performs better even in the case of small samples. Finally, we apply these CEs to the actual data for analysis. The CEs of the SUR model with multiple equations are found to be more accurate than the case with only two equations.
  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-13-269, author = {Qingli Pan and Chuanlin Zhang}, title = {Confidence ellipsoids for the primary regression coefficients in m- equation seemingly unrelated regression models}, journal = {Journal of Information and Computing Science}, year = {2018}, volume = {13}, number = {4}, pages = {269--282}, abstract = { For  a  m-equation  seemingly  unrelated  regression(SUR)  model,  this  paper  derives  two  basic confidence  ellipsoids(CEs)  respectively  based  on  the  two-stage  estimation  and  maximum  likelihood estimation(MLE), and corrects the two CEs using the Bartlett correction method, resulting in four new CEs. In  the  meantime  via  using  the  partition  matrix,  we  derive  a  new  matrix-derivative-based  formulation  of Fisher's information matrix for calculating the maximum likelihood estimator of the m-equation SUR model. By  Monte  Carlo  simulation,  the  coverage  probabilities  and  average  volumetric  characteristics  of  CEs  are compared under different sample values and different correlation coefficients. Moreover, it is proved that the CE based on the second bartlett correction method performs better even in the case of small samples. Finally, we apply these CEs to the actual data for analysis. The CEs of the SUR model with multiple equations are found to be more accurate than the case with only two equations. }, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22436.html} }
TY - JOUR T1 - Confidence ellipsoids for the primary regression coefficients in m- equation seemingly unrelated regression models AU - Qingli Pan and Chuanlin Zhang JO - Journal of Information and Computing Science VL - 4 SP - 269 EP - 282 PY - 2018 DA - 2018/12 SN - 13 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22436.html KW - AB - For  a  m-equation  seemingly  unrelated  regression(SUR)  model,  this  paper  derives  two  basic confidence  ellipsoids(CEs)  respectively  based  on  the  two-stage  estimation  and  maximum  likelihood estimation(MLE), and corrects the two CEs using the Bartlett correction method, resulting in four new CEs. In  the  meantime  via  using  the  partition  matrix,  we  derive  a  new  matrix-derivative-based  formulation  of Fisher's information matrix for calculating the maximum likelihood estimator of the m-equation SUR model. By  Monte  Carlo  simulation,  the  coverage  probabilities  and  average  volumetric  characteristics  of  CEs  are compared under different sample values and different correlation coefficients. Moreover, it is proved that the CE based on the second bartlett correction method performs better even in the case of small samples. Finally, we apply these CEs to the actual data for analysis. The CEs of the SUR model with multiple equations are found to be more accurate than the case with only two equations.
Qingli Pan and Chuanlin Zhang. (2018). Confidence ellipsoids for the primary regression coefficients in m- equation seemingly unrelated regression models. Journal of Information and Computing Science. 13 (4). 269-282. doi:
Copy to clipboard
The citation has been copied to your clipboard