arrow
Volume 14, Issue 1
Error Analysis for Sparse Time-Frequency Decomposition of Non- Integer Period Sampling Signals

Qi Yang

J. Info. Comput. Sci. , 14 (2019), pp. 025-034.

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract
In  this  paper,  we  review  a  nonlinear  matching  pursuit  approach  (Hou  and  Shi,  2013),  a  data- driven  time-frequency  analysis  method,  which  is  looking  for  the  sparsest  representation  of  multiscale  data over a dictionary consisting of all intrinsic mode functions (IMFs). In many practical problems, signals are non-integer period sampled. In other words, the time window may not contain exactly an integer number of signal periods. We consider the sparse time-frequency decomposition of non-integer period sampling signals by the nonlinear matching pursuit method and estimate the error. The estimation show that the relative error depends on the separation factor, the frequency ratio, and the number of periods of the IMF.
  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-14-025, author = {Qi Yang}, title = {Error Analysis for Sparse Time-Frequency Decomposition of Non- Integer Period Sampling Signals}, journal = {Journal of Information and Computing Science}, year = {2019}, volume = {14}, number = {1}, pages = {025--034}, abstract = { In  this  paper,  we  review  a  nonlinear  matching  pursuit  approach  (Hou  and  Shi,  2013),  a  data- driven  time-frequency  analysis  method,  which  is  looking  for  the  sparsest  representation  of  multiscale  data over a dictionary consisting of all intrinsic mode functions (IMFs). In many practical problems, signals are non-integer period sampled. In other words, the time window may not contain exactly an integer number of signal periods. We consider the sparse time-frequency decomposition of non-integer period sampling signals by the nonlinear matching pursuit method and estimate the error. The estimation show that the relative error depends on the separation factor, the frequency ratio, and the number of periods of the IMF. }, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22429.html} }
TY - JOUR T1 - Error Analysis for Sparse Time-Frequency Decomposition of Non- Integer Period Sampling Signals AU - Qi Yang JO - Journal of Information and Computing Science VL - 1 SP - 025 EP - 034 PY - 2019 DA - 2019/03 SN - 14 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22429.html KW - AB - In  this  paper,  we  review  a  nonlinear  matching  pursuit  approach  (Hou  and  Shi,  2013),  a  data- driven  time-frequency  analysis  method,  which  is  looking  for  the  sparsest  representation  of  multiscale  data over a dictionary consisting of all intrinsic mode functions (IMFs). In many practical problems, signals are non-integer period sampled. In other words, the time window may not contain exactly an integer number of signal periods. We consider the sparse time-frequency decomposition of non-integer period sampling signals by the nonlinear matching pursuit method and estimate the error. The estimation show that the relative error depends on the separation factor, the frequency ratio, and the number of periods of the IMF.
Qi Yang. (2019). Error Analysis for Sparse Time-Frequency Decomposition of Non- Integer Period Sampling Signals. Journal of Information and Computing Science. 14 (1). 025-034. doi:
Copy to clipboard
The citation has been copied to your clipboard