arrow
Volume 15, Issue 2
Numerical Computations of Eleventh Order Boundary Value Problems with Bezier Polynomials by Galerkin Weighted Residual Method

Nazrul Islam

J. Info. Comput. Sci. , 15 (2020), pp. 083-089.

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract
Some techniques are available to solve numerically higher order boundary value problems. The aim  of this paper is to apply  Galerkin  weighted residual  method (GWRM) for solving eleventh order linear and  nonlinear  boundary  value  problems.  Using  GWRM,  approximate  solutions  of  eleventh-order  boundary value  problems  are  developed.  This  approach  provides  the  solution  in  terms  of  a  convergent  series. Approximate  results  are  given  for  several  examples  to  illustrate  the  implementation  and  accuracy  of  the method.  The  results  are  depicted  both  graphically  and  numerically.  All  results  are  compared  with  the analytical  solutions  to  show  the  convergence  of  the  proposed  algorithm.  It  is  observed  that  the  present method  is  a  more  effective  tool  and  yields  better  results.  All  problems  are  computed  using  the  software MATLAB R2017a.
  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JICS-15-083, author = {Nazrul Islam}, title = {Numerical Computations of Eleventh Order Boundary Value Problems with Bezier Polynomials by Galerkin Weighted Residual Method}, journal = {Journal of Information and Computing Science}, year = {2020}, volume = {15}, number = {2}, pages = {083--089}, abstract = { Some techniques are available to solve numerically higher order boundary value problems. The aim  of this paper is to apply  Galerkin  weighted residual  method (GWRM) for solving eleventh order linear and  nonlinear  boundary  value  problems.  Using  GWRM,  approximate  solutions  of  eleventh-order  boundary value  problems  are  developed.  This  approach  provides  the  solution  in  terms  of  a  convergent  series. Approximate  results  are  given  for  several  examples  to  illustrate  the  implementation  and  accuracy  of  the method.  The  results  are  depicted  both  graphically  and  numerically.  All  results  are  compared  with  the analytical  solutions  to  show  the  convergence  of  the  proposed  algorithm.  It  is  observed  that  the  present method  is  a  more  effective  tool  and  yields  better  results.  All  problems  are  computed  using  the  software MATLAB R2017a. }, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22383.html} }
TY - JOUR T1 - Numerical Computations of Eleventh Order Boundary Value Problems with Bezier Polynomials by Galerkin Weighted Residual Method AU - Nazrul Islam JO - Journal of Information and Computing Science VL - 2 SP - 083 EP - 089 PY - 2020 DA - 2020/06 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22383.html KW - AB - Some techniques are available to solve numerically higher order boundary value problems. The aim  of this paper is to apply  Galerkin  weighted residual  method (GWRM) for solving eleventh order linear and  nonlinear  boundary  value  problems.  Using  GWRM,  approximate  solutions  of  eleventh-order  boundary value  problems  are  developed.  This  approach  provides  the  solution  in  terms  of  a  convergent  series. Approximate  results  are  given  for  several  examples  to  illustrate  the  implementation  and  accuracy  of  the method.  The  results  are  depicted  both  graphically  and  numerically.  All  results  are  compared  with  the analytical  solutions  to  show  the  convergence  of  the  proposed  algorithm.  It  is  observed  that  the  present method  is  a  more  effective  tool  and  yields  better  results.  All  problems  are  computed  using  the  software MATLAB R2017a.
Nazrul Islam. (2020). Numerical Computations of Eleventh Order Boundary Value Problems with Bezier Polynomials by Galerkin Weighted Residual Method. Journal of Information and Computing Science. 15 (2). 083-089. doi:
Copy to clipboard
The citation has been copied to your clipboard