- Journal Home
- Volume 19 - 2024
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
J. Info. Comput. Sci. , 17 (2022), pp. 003-018.
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the non-global existence of solutions to the following time fractional nonlinear diffusion equations $$\begin{cases} ^cD^{\alpha}_{0|t}u-\Delta u+(1+t)^ru_t=I^{\beta}_{0|t}(|u|^{p-1}u), \ x\in \mathbb{R}^n, \ t>0 \\ u(0,x)=u_0(x), \ u_t(0,x)=u_1(x), \ x\in\mathbb{R}^n, \end{cases}$$ where $1<\alpha<2$, $\beta\in(0,1)$, $1<\alpha+\beta<2$, $r\in (-1,1)$, $p>1$, $u_0, u_1\in L^q(\mathbb{R}^n)(q>1)$ and $^cD^{\alpha}_{0|t}u$ denotes left Caputo fractional derivative of order $\alpha$. By using the test function method, we prove that the problem admits no global weak solution with suitable initial data when $p$ falls in different intervals. Our results generalize that in [4].
}, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22357.html} }In this paper, we study the non-global existence of solutions to the following time fractional nonlinear diffusion equations $$\begin{cases} ^cD^{\alpha}_{0|t}u-\Delta u+(1+t)^ru_t=I^{\beta}_{0|t}(|u|^{p-1}u), \ x\in \mathbb{R}^n, \ t>0 \\ u(0,x)=u_0(x), \ u_t(0,x)=u_1(x), \ x\in\mathbb{R}^n, \end{cases}$$ where $1<\alpha<2$, $\beta\in(0,1)$, $1<\alpha+\beta<2$, $r\in (-1,1)$, $p>1$, $u_0, u_1\in L^q(\mathbb{R}^n)(q>1)$ and $^cD^{\alpha}_{0|t}u$ denotes left Caputo fractional derivative of order $\alpha$. By using the test function method, we prove that the problem admits no global weak solution with suitable initial data when $p$ falls in different intervals. Our results generalize that in [4].