TY - JOUR T1 - Numerical Analysis of Finite Dimensional Approximations in Finite Temperature DFT AU - Xu , Ge AU - Chen , Huajie AU - Gao , Xingyu JO - CSIAM Transactions on Applied Mathematics VL - 2 SP - 412 EP - 434 PY - 2025 DA - 2025/05 SN - 6 DO - http://doi.org/10.4208/csiam-am.SO-2024-0015 UR - https://global-sci.org/intro/article_detail/csiam-am/24091.html KW - Finite temperature density functional theory, Mermin-Kohn-Sham equation, density matrix, a priori error estimates AB -
In this paper, we study numerical approximations of the ground states in finite temperature density functional theory. We formulate the problem with respect to the density matrices and justify the convergence of the finite dimensional approximations. Moreover, we provide an optimal a priori error estimate under some mild assumptions and present some numerical experiments to support the theory.