TY - JOUR T1 - The First Eigenvalue of $(p, q)$-Laplacian System on $C$-Totally Real Submanifold in Sasakian Manifolds AU - Kolaei , Mohammad Javad Habibi Vosta AU - Azami , Shahroud JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 873 EP - 889 PY - 2024 DA - 2024/12 SN - 6 DO - http://doi.org/10.12150/jnma.2024.873 UR - https://global-sci.org/intro/article_detail/jnma/23661.html KW - Eigenvalue, $(p, q)$-Laplacian system, geometric estimate, Sasakian manifolds. AB -
Consider $(M, g)$ as an $n$-dimensional compact Riemannian manifold. Our main aim in this paper is to study the first eigenvalue of $(p, q)$-Laplacian system on $C$-totally real submanifold in Sasakian space of form $\overline{M}^{2m+1} (\kappa).$ Also in the case of $p, q > n$ we show that for $λ_{1,p,q}$ arbitrary large there exists a Riemannian metric of volume one conformal to the standard metric of $S^n.$