TY - JOUR T1 - Classification with application to Functional Data based on Gaussian process AU - Xin Liu and Chunzheng Cao JO - Journal of Information and Computing Science VL - 2 SP - 134 EP - 140 PY - 2020 DA - 2020/06 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22388.html KW - AB - In  this  paper,  we  briefly  introduce  four  methods  for  functional  classification.  To  compare  the effects of the four  models,  we  generate the data  from  Gaussian process based on a functional  mixed-effects model, square exponential kernel is used in random-effect term to describe the nonlinear structure of the data. The outcomes show that the two functional classification models have a better prediction correct rate than the two machine learning classification models.