A Note on the Global Existence in a Fully Parabolic Patlak-Keller-Segel-Navier-Stokes System
Commun. Math. Anal. Appl., 4 (2025), pp. 179-201.
Published online: 2025-06
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMAA-4-179,
author = {Zheng , Pan},
title = {A Note on the Global Existence in a Fully Parabolic Patlak-Keller-Segel-Navier-Stokes System},
journal = {Communications in Mathematical Analysis and Applications},
year = {2025},
volume = {4},
number = {2},
pages = {179--201},
abstract = {
This paper is concerned with a fully parabolic Patlak-Keller-Segel-Navier-Stokes system
where $Ω ⊂\mathbb{R}^2$ is a smoothly bounded domain and the parameter $χ$ is positive.
The main aim of this note is to show that if
then the solution of the above system is global and bounded in time.
TY - JOUR
T1 - A Note on the Global Existence in a Fully Parabolic Patlak-Keller-Segel-Navier-Stokes System
AU - Zheng , Pan
JO - Communications in Mathematical Analysis and Applications
VL - 2
SP - 179
EP - 201
PY - 2025
DA - 2025/06
SN - 4
DO - http://doi.org/10.4208/cmaa.2025-0002
UR - https://global-sci.org/intro/article_detail/cmaa/24121.html
KW - Global existence, boundedness, Patlak-Keller-Segel-Navier-Stokes.
AB -
This paper is concerned with a fully parabolic Patlak-Keller-Segel-Navier-Stokes system
where $Ω ⊂\mathbb{R}^2$ is a smoothly bounded domain and the parameter $χ$ is positive.
The main aim of this note is to show that if
then the solution of the above system is global and bounded in time.
Zheng , Pan. (2025). A Note on the Global Existence in a Fully Parabolic Patlak-Keller-Segel-Navier-Stokes System.
Communications in Mathematical Analysis and Applications. 4 (2).
179-201.
doi:10.4208/cmaa.2025-0002
Copy to clipboard